indoor localization accuracy estimation from fingerprint
play

Indoor Localization Accuracy Estimation from Fingerprint Data Artyom - PowerPoint PPT Presentation

Indoor Localization Accuracy Estimation from Fingerprint Data Artyom Nikitin 1 Christos Laoudias 2 Georgios Chatzimilioudis 2 Panagiotis Karras 3 Demetrios Zeinalipour-Yazti 2 , 4 1 Skoltech, 143026 Moscow, Russia 2 University of Cyprus, 1678


  1. Indoor Localization Accuracy Estimation from Fingerprint Data Artyom Nikitin 1 Christos Laoudias 2 Georgios Chatzimilioudis 2 Panagiotis Karras 3 Demetrios Zeinalipour-Yazti 2 , 4 1 Skoltech, 143026 Moscow, Russia 2 University of Cyprus, 1678 Nicosia, Cyprus 3 Aalborg University, 9220 Aalborg, Denmark 4 Max-Planck-Institut f¨ ur Informatik, 66123 Saarbr¨ ucken, Germany

  2. Outline 1 Motivation 2 Background 3 Our Solution 4 Experiments 5 Conclusions 2/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  3. Motivation: Indoor Localization Indoor Navigation Services spread widely. Applications: localization, marketing, warehouse optimization, guides, games, etc. 3/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  4. Motivation: Indoor Localization Indoor Navigation Services spread widely. Applications: localization, marketing, warehouse optimization, guides, games, etc. Different sources of data: cellular, Wi-Fi, BT, magnetic field of the Earth, light, sound, etc. 3/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  5. Motivation: Accuracy Estimation Important to estimate the accuracy of localization. 4/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  6. Motivation: Accuracy Estimation Important to estimate the accuracy of localization. Online: important for the end-user (Google Maps, CONE). 4/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  7. Motivation: Accuracy Estimation Important to estimate the accuracy of localization. Online: important for the end-user (Google Maps, CONE). Offline: important for the service provider. Provide quality guarantees. Perform decision making. 4/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  8. Outline 1 Motivation 2 Background 3 Our Solution 4 Experiments 5 Conclusions 5/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  9. Background: Localization Approaches Modeling Known APs positions Known data model, e.g., Path Loss: L = 10 n log 10 ( d ) + C 6/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  10. Background: Localization Approaches Modeling + Fingerprinting Known APs positions Known data model, e.g., Path Loss: L = 10 n log 10 ( d ) + C Known pre-collected fingerprints (position + readings) 6/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  11. Background: Localization Approaches Fingerprinting Known APs positions Known data model, e.g., Path Loss: L = 10 n log 10 ( d ) + C Known pre-collected fingerprints (position + readings) 6/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  12. Background: Accuracy Estimation Existing solutions Heuristics: e.g., fingerprint density, cluster & merge, etc. + Do not require models − No theoretical guarantees Theoretical: e.g., use Cramer-Rao Lower Bound (CRLB) + Provide theoretical guarantees − Model is required Our goal: + No model required + Provide guarantees via CRLB 7/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  13. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  14. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  15. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 3 From the likelihood calculate Cramer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  16. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 3 From the likelihood calculate Cramer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  17. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 3 From the likelihood calculate Cramer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  18. Background: Accuracy Estimation How to find the likelihood ? 9/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  19. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  20. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 1 Predict using model 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  21. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 1 Predict using model 2 Estimate noise 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  22. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 1 Predict using model 2 Estimate noise 3 Compare to measurements 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  23. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  24. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  25. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 2 Get fingerprints 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  26. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 2 Get fingerprints 3 Estimate parameters 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  27. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 2 Get fingerprints 3 Estimate parameters 4 Estimate noise 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  28. Background: Accuracy Estimation Pure Fingerprinting No model provided. 12/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  29. Background: Accuracy Estimation Pure Fingerprinting No model provided. Data is too complex, e.g., ambient magnetic field: vector field = direction + magnitude; predictable outdoors; perturbed indoors by metal constructions and electrical equipment. 12/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  30. Background: Accuracy Estimation Pure Fingerprinting No model provided. Data is too complex, e.g., ambient magnetic field: vector field = direction + magnitude; predictable outdoors; perturbed indoors by metal constructions and electrical equipment. 12/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  31. Outline 1 Motivation 2 Background 3 Our Solution 4 Experiments 5 Conclusions 13/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  32. Our solution: Goal Pure fingerprinting approach Arbitrary data sources FM = { ( r i , m i ) : i = 1 , N , r i ∈ R d r , m i ∈ R d m } m i - d m -dimensional vector of measurements at location r i . Given the FM, assign to any location a navigability score . Visualize navigability scores to assist INS deployer. 14/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

Recommend


More recommend