indirect planetary capture via periodic orbit about
play

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS - PowerPoint PPT Presentation

6 th International Conference on Astrodynamics Tools and Technique (ICATT) INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS LI Xiangyu, Qiao Dong, Cui Pingyuan Beijing Institute of Technology Institute of Deep Space


  1. 6 th International Conference on Astrodynamics Tools and Technique (ICATT) INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS LI Xiangyu, Qiao Dong, Cui Pingyuan Beijing Institute of Technology Institute of Deep Space Exploration Technology 15 March 2016

  2. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS Contents I. Introduction II. Concept of Indirect Planetary Capture III. Orbit Selection for Periodic Orbit IV. Simulation and Comparisons V. Conclusion 2

  3. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS I. Introduction Planetary Capture  A key process in planet exploration mission Interplanetary Trajectory Planetary Capture Mission Orbits  Plays an important role in the trajectory design Fuel Consumption Flight System Design Capture Trajectory Design Interplanetary Trajectory Design Midcourse Correction 3

  4. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS I. Introduction Current Capture Strategy  Direct Capture Single impulsive maneuver at periapsis r  Easy to design p v v   Aerocapture Take advantage of the aerodynamic force to reduce the velocity Precise guidance and control Fuel Saving Protection for high heat rate and overload  Ballistic Capture Exploits the gravitational force of planets to capture a spacecraft Low energy Capture Long transfer time Multi capture From Belbruno and Miller 1993 Fall when is high v  opportunities 4

  5. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS I. Introduction Circular Restricted Three body Problem (CRTBP)  Libration(Lagrange) Points          (1 )( x ) ( x 1 )       Periodic orbits x 2 y x 3 3 r r  s m  Stable/Unstable Manifolds       (1 ) y y     y 2 x y 3 3  r r s m Space observation     (1 ) z z     z  3 3  r r s m Low energy transfer Communication relay Capture to periodic orbit Nakamiya and Scheeres (2008,2010) Wang (2014) Planetary Capture 5

  6. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS II. Concept of Indirect Planetary Capture Interplanetary Trajectory Concept  Use periodic orbit as a park orbit Periapsis maneuver  Connect with interplanetary trajectory by stable manifolds Stable manifold  Connect with mission orbit by unstable manifolds Periodic orbit about libration points Small perturbation Unstable manifold Periapsis maneuver Mission orbit 6

  7. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS II. Concept of Indirect Planetary Capture Process  Three impulsive maneuver First periapsis maneuver   v v  1 Perturbation to generate unstable manifolds  Initial guess and correction v 2 Second Periapsis maneuver   v a e , 3 Process  Three impulsive maneuver First periapsis maneuver Perturbation to generate unstable manifolds Second Periapsis maneuver 7

  8. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS II. Concept of Indirect Planetary Capture Maneuver  Three impulsive maneuver First periapsis maneuver   v v  1 Perturbation to generate unstable manifolds  Initial guess and correction v 2 Second Periapsis maneuver   v a e , 3 Design  Construct the periodic parking orbit  Generate proper unstable manifolds same periapsis distance as mission orbit  Generate proper stable manifolds for interplanetary design and midcourse correction 8

  9. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Orbit Selection  Two criteria  Energy constrain  First maneuver as low as possible v 1    2 2 2          2 v v v v v v v  1 ex ps ex es es r r r ps ps ps   2 2   2 v      r r v 1       p p v 1   0, v 0    2 3 3 r r 2 r 2 r  2 2    r ps 2 p p 2 p v v   ps r r p p Periapsis of stable manifolds should close to the surface of Mars  State constrain The periapsis distance of natural unstable manifolds should close to that of mission orbits 9

  10. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Sun-Mars System Planar Orbits  Planar Lyapunov orbit  L1 orbit from to     5 4 7.5 10 A 7.3 10 km A km y y    L2 orbit from to   5 6 A 1.0 10 km A 1.5 10 km y y Periapsis distance of stable manifolds   Critical amplitude   5 5 A 5.7 10 km A A 5.5 10 km yc yc yc 10

  11. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Planar Orbits Periapsis distance of unstable manifolds from to 3589 km 300000 km Candidate parking orbits L1 orbit from   L2 orbit from   5 5 A 5.7 10 km A 5.5 10 km y y 11

  12. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Planar Orbits  Periapsis State  Periapsis phase angle    L1:   L2: 10 20 ~ 50 190 140 ~ 260 0 0 12

  13. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Sun-Mars System Spatial Orbits  Vertical Lyapunov orbit Large periapsis distance Infeasible  Halo orbit      L1 orbit from to 4 4 A 2.7 10 km A 6.6 10 km z z      L2 orbit from to 4 5 A 3.7 10 km A 6.5 10 km z z Periapsis distance of stable manifolds Critical amplitude A zc     5 5 A 2.9 10 km A 2.9 10 km zc zc 13

  14. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Halo Orbits Periapsis distance of unstable manifolds from to 3589 km 300000 km Candidate parking orbits   L1 orbit from L2 orbit from   5 5 A 2.9 10 km A 2.9 10 km z z to to     5 5 A 6.6 10 km A 6.5 10 km z z 14

  15. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Halo Orbits  Periapsis State Orbital Inclination i Periapsis phase angle  Periapsis Spatial angle  L1: i  i  i  i  L2: 20 140 130 20 15

  16. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Halo Orbits  Periapsis State Orbital Inclination i  Periapsis phase angle  Periapsis Spatial angle L1:     L2: 10 5 ~ 20 190 182 ~ 202 16

  17. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS III. Orbit Selection for Periodic Orbit Halo Orbits  Periapsis State Orbital Inclination i  Periapsis phase angle  Periapsis Spatial angle     L1:   L2:   19 41 40 17 17

  18. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS IV. Simulation and Comparisons  Direct capture    2 (1 ) e       2 r a (1 e ) v v  d p r r p p  Indirect capture First impulsive maneuver Perturbation velocity  2       2 v v v v 1 m s /  1 ps 2 r ps  3589 r km Capture Time ps Third impulsive maneuver    T T T T s p u   (1 e )    v v Stable manifold transfer time T 3 pu s r p T Parking time p      v v v v Unstable manifold transfer time 1 2 3 T u 18

  19. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS IV. Simulation and Comparisons  Mission Orbit I 200km circular orbit  Parking orbit L2 planar Lyapunov orbit   5 A 5.7 10 km y    Direct Capture Indirect capture v v v  (km/s) d  (km/s) (km/s) (day) (km/s) v  T v d 1.88 1.780 1.779 0.001 2.09 1.859 1.858 775.37 0.001 3.39 2.492 2.487 0.005 Low orbit capture :  Cost the same velocity as direct capture Provides a chance to explore the space environment in the vicinity of Mars and Lagrange Long transfer time points without extra velocity increment 19

  20. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS IV. Simulation and Comparisons  Mission Orbit I 200km circular orbit  Parking orbit L2 planar Lyapunov orbit   5 A 5.7 10 km y 20

  21. INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS IV. Simulation and Comparisons  Mission Orbit II 800km*60000km elliptic orbit  Parking orbit L2 Halo orbit   5 A 4.6 10 km z    Direct Capture Indirect capture v v v  (km/s) d  (km/s) (km/s) (day) (km/s) v  T v d 1.88 0.518 0.493 0.025 2.09 0.602 0.572 696.85 0.030 3.39 1.272 1.205 0.067 Middle orbit capture :  As the periapsis of mission orbit increases, the indirect capture requires less velocity than direct capture  Save more fuel for higher excess velocity v  21

Recommend


More recommend