independent natural extension for infinite spaces
play

Independent Natural Extension for Infinite Spaces - PowerPoint PPT Presentation

Independent Natural Extension for Infinite Spaces Williams-coherence to the Rescue! Jasper De Bock Ghent University Belgium X 1 X 2 independent local local uncertainty uncertainty model model ? joint uncertainty model P (


  1. Independent Natural Extension for Infinite Spaces Williams-coherence to the Rescue! Jasper De Bock Ghent University Belgium

  2. X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 model model ? joint uncertainty model

  3. P ( X 1 | X 2 ) = P ( X 1 ) P ( X 2 | X 1 ) = P ( X 2 ) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 model model P ( X 1 ) P ( X 2 ) ? joint uncertainty model P ( X 1 , X 2 )

  4. P ( X 1 | X 2 ) = P ( X 1 ) P ( X 2 | X 1 ) = P ( X 2 ) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 model model P ( X 1 ) P ( X 2 ) joint uncertainty model P ( X 1 , X 2 ) = P ( X 1 ) P ( X 2 )

  5. X 1 local 
 uncertainty 
 model P ( X 1 ) P ( X 1 ) P ( f ( X 1 )) P ( f ( X 1 )) D 1 , , , , , . . . E ( f ( X 1 )) E ( f ( X 1 ))

  6. X 1 local 
 uncertainty 
 model P ( X 1 ) P ( X 1 ) P ( f ( X 1 )) P ( f ( X 1 )) D 1 , , , , , . . . E ( f ( X 1 )) E ( f ( X 1 ))

  7. X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 model model P ( f ( X 1 )) P ( f ( X 2 )) ? joint uncertainty model P ( f ( X 1 , X 2 ))

  8. ? X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 model model P ( f ( X 1 )) P ( f ( X 2 )) ? joint uncertainty model P ( f ( X 1 , X 2 ))

  9. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 model model P ( f ( X 1 )) P ( f ( X 2 )) ? joint uncertainty model P ( f ( X 1 , X 2 ))

  10. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 Coherence model model P ( f ( X 1 )) P ( f ( X 2 )) ? joint uncertainty model P ( f ( X 1 , X 2 ))

  11. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 Coherence model model P ( f ( X 1 )) P ( f ( X 2 )) = = P 2 ( f ) P 1 ( f ) joint uncertainty model ( P 1 ⊗ P 2 )( f ( X 1 , X 2 ))

  12. Independent Natural Extension for Infinite Spaces Williams-coherence to the Rescue! Jasper De Bock Ghent University Belgium

  13. Two very useful properties External additivity ( P 1 ⊗ P 2 )( f ( X 1 ) + h ( X 2 )) = P 1 ( f ( X 1 )) + P 2 ( h ( X 2 )) Factorisation ( P 1 ⊗ P 2 )( g ( X 1 ) h ( X 2 )) ( P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≥ 0 = P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≤ 0 if g ≥ 0

  14. DISCLAIMER! All of this is well known, and has been for several years now… de Cooman, 
 Miranda & Zaffalon 2011 de Cooman & 
 Miranda 2012

  15. DISCLAIMER! All of this is well known, and has been for several years now… de Cooman, 
 Miranda & …but Zaffalon 2011 de Cooman & 
 only for Miranda 2012 finite spaces!

  16. Independent Natural Extension for Infinite Spaces ?

  17. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 Coherence model model ? P ( f ( X 1 )) P ( f ( X 2 )) ? joint uncertainty model

  18. Coherence ? Walley Williams

  19. Independent natural extension may not exist! Miranda & Zaffalon 2015 Coherence ? Walley Williams

  20. Independent Independent natural extension natural extension may not exist! always exists! De Bock 
 2017 Miranda & Vicig 
 Zaffalon 2015 Coherence 2000 Walley Williams

  21. Independent Natural Extension for Infinite Spaces Williams-coherence to the Rescue! !

  22. Two very useful properties ? External additivity ( P 1 ⊗ P 2 )( f ( X 1 ) + h ( X 2 )) = P 1 ( f ( X 1 )) + P 2 ( h ( X 2 )) ? Factorisation ( P 1 ⊗ P 2 )( g ( X 1 ) h ( X 2 )) ( P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≥ 0 = P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≤ 0 if g ≥ 0

  23. Two very useful properties External additivity ( P 1 ⊗ P 2 )( f ( X 1 ) + h ( X 2 )) = P 1 ( f ( X 1 )) + P 2 ( h ( X 2 )) ? Factorisation ( P 1 ⊗ P 2 )( g ( X 1 ) h ( X 2 )) ( P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≥ 0 = P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≤ 0 if g ≥ 0

  24. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) X 1 X 2 independent local 
 local 
 uncertainty 
 uncertainty 
 Coherence model model P ( f ( X 1 )) P ( f ( X 2 )) = = P 2 ( f ) P 1 ( f ) joint uncertainty model ( P 1 ⊗ P 2 )( f ( X 1 , X 2 ))

  25. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) independent P ( f ( X 1 ) | B 2 ) = P ( f ( X 1 )) ∀ B 2 ∈ B 2 P ( f ( X 2 ) | B 1 ) = P ( f ( X 2 )) ∀ B 1 ∈ B 1

  26. P ( f ( X 1 ) | X 2 ) = P ( f ( X 1 )) P ( f ( X 2 ) | X 1 ) = P ( f ( X 2 )) independent P ( f ( X 1 ) | B 2 ) = P ( f ( X 1 )) ∀ B 2 ∈ B 2 P ( f ( X 2 ) | B 1 ) = P ( f ( X 2 )) ∀ B 1 ∈ B 1 value-independence: B i = {{ x i } : x i ∈ X i } subset-independence: B i = P ( X i ) \ { ∅ }

  27. Two very useful properties External additivity ( P 1 ⊗ P 2 )( f ( X 1 ) + h ( X 2 )) = P 1 ( f ( X 1 )) + P 2 ( h ( X 2 )) ? Factorisation ( P 1 ⊗ P 2 )( g ( X 1 ) h ( X 2 )) ( P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≥ 0 = P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≤ 0 if g ≥ 0

  28. Two very useful properties External additivity ( P 1 ⊗ P 2 )( f ( X 1 ) + h ( X 2 )) = P 1 ( f ( X 1 )) + P 2 ( h ( X 2 )) Factorisation ( P 1 ⊗ P 2 )( g ( X 1 ) h ( X 2 )) ( P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≥ 0 = P 1 ( g ( X 1 )) P 2 ( h ( X 2 )) if P ( h ( X 2 )) ≤ 0 if g ≥ 0 is B 1 -measurable

  29. Independent Independent natural extension natural extension may not exist! always exists! Walley Williams value- subset- independence independence Factorisation Factorisation may not hold! always holds!

Recommend


More recommend