in vitro to in vivo correlation of corrosion in nitinol
play

In-vitro to In-vivo Correlation of Corrosion in Nitinol - PowerPoint PPT Presentation

In-vitro to In-vivo Correlation of Corrosion in Nitinol Cardiovascular Stents Stacey J.L. Sullivan 1 Daniel Madamba 2 Shiril Sivan 1 Katie Miyashiro 2 Maureen L. Dreher 1 Christine Trpanier 2 Srinidhi Nagaraja 1 1 Office of Science and


  1. In-vitro to In-vivo Correlation of Corrosion in Nitinol Cardiovascular Stents Stacey J.L. Sullivan 1 Daniel Madamba 2 Shiril Sivan 1 Katie Miyashiro 2 Maureen L. Dreher 1 Christine Trépanier 2 Srinidhi Nagaraja 1 1 Office of Science and Engineering Laboratories; FDA Center for Devices & Radiological Health 2 Confluent Medical Technologies May 19, 2017

  2. Stent Corrosion Testing Paradigm In-vivo Corrosion ? ? ? FDA guidance document Select Updates for Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems 2

  3. Motivation Proposed Acceptance Criteria • ASTM F2129 not intended to represent Eb > 600 mV à Acceptable in-vivo conditions Eb = 300-600 mV à Marginal Eb < 300 mV à Unacceptable • Results difficult to Rosenbloom and Corbett, 2007 correlate with in-vivo performance • Variability in breakdown potentials from workshop respondents 2012 FDA Corrosion Workshop Nagaraja et al., 2016 3

  4. Objectives 1. Manufacture and characterize Nitinol stents manufactured to possess low to high corrosion resistance (ASTM F2129) 2. Investigate in-vivo pitting corrosion of Nitinol stents manufactured to possess low to high corrosion resistance 3. Correlate in-vitro nickel leaching with in-vivo release and biocompatibility in Nitinol stents with low to high corrosion resistance 4

  5. Stent Manufacturing Process Group SP MP AF OT Salt Pot Mechanical Polish Air Furnace Oxidized Tubing • Ground Tubing As –received • Honed Laser Cut Heat • Honed Affected (no processing) • Debur & Deslug Zone • Chemically Polish Stress Relief 505°C Salt Pot 540°C Air furnace 505°C Salt Pot Expansion 505°C Salt Pot 505°C Air furnace 505°C Salt Pot Af Tuning 505°C Salt Pot 550°C Air furnace 505°C Salt Pot • Ultrasonic clean • Chemical Etch • Chemical Polish Finishing Ultrasonic clean Ultrasonic clean • Burnish • Ultrasonic clean Visual Appearance 5

  6. OSS Stent FEA – Crimping & Deployment à High strain regions at the apex of V-struts 6

  7. Methods In-vitro • Surface characterization à SEM/Auger • Pitting corrosion à ASTM F2129 • Uniform corrosion à Nickel leach In-vivo • Minipig implantation : ◦ left and right iliac arteries ◦ 12 animals implanted • Single stent conditions (n=6/group) • 6 month implantation period • Explanted stent surface analysis ◦ SEM and EDS 7

  8. In-vitro Testing 8

  9. Surface Characterization - SEM Salt Pot (high F2129) Mech. Polish (medium F2129) Air Furnace (low F2129) Oxidized Tubing (low F2129) 9

  10. Surface Characterization - Auger Salt Pot Mech. Polish Oxide Thickness ~ 4 nm Oxide Thickness ~ 432 nm Complex oxide, Ni rich region Oxidized Tubing Air Furnace Oxide Thickness ~ 132 nm Oxide Thickness ~ 400 nm Ni rich region Ni rich region 10

  11. ASTM F2129 Testing Mech Polish Salt Pot High E b Low E b Air Furnace Oxidized Tubing 11

  12. ASTM F2129 Results Eb Eb-Er Eb SP SP SP SP MP MP MP MP AF AF AF AF 95% confidence interval OT OT OT OT 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 Voltage (mV vs. SCE ) Voltage (mV vs SCE) Voltage (mV vs SCE) SP MP AF OT E r (mV) -224 ± 112 -103 ± 65 -141 ± 44 -230 ± 178 E b (mV) 975 ± 94 767 ± 226 111 ± 63 68 ± 29 E b -E r (mV) 1199 ± 118 870 ± 240 252 ± 90 297 ± 165 n=8-14/group 12

  13. Nickel Leach Testing and Results • OT, AF, SP, and MP stents (8 X 30mm) immersed in PBS at 37C • Stents crimped prior to testing • 10 time points: Day 1, 2, 3, 5, 7, 14, 21, 30, 45, 60 • Ni release: OT > SP > AF > MP for all time points (*p<0.001) • ASTM F2129 breakdown potentials not correlated to Ni release OT SP AF MP (n=5/group) Sullivan et al., 2015 13

  14. Explant Analysis 14

  15. In-Situ Imaging Proximal Proximal Distal Distal à Deformation, but no fractures observed in explants 15

  16. Explanted Artery Nickel Arterial tissue surrounding stent digested using papain 10,000 10,000 Explanted Artery (180 days) Explanted Artery (180 days) Bench Testing (60 days) 1,000 1,000 Ni Release (ppb) Ni Release (ppb) 100 100 10 10 1 1 (n=3-5/group) SP SP MP MP AF AF OT OT à Artery nickel: OT > AF > SP > MP à Explanted artery Ni values variable compared to in-vitro results 16

  17. SEM Imaging – Salt Pot (high F2129) Non-implanted Explant Ni/Ti n 1.12 SP Non-implanted 13 +/- 0.06 1.13 SP Explants 36 +/- 0.04 à No corrosion observed in explanted SP stents 17

  18. SEM Imaging – Mech. Polish (medium F2129) Non-implanted Explant Ni/Ti n 1.11 MP Non-implanted 14 +/- 0.01 1.11 MP Explants 47 +/- 0.03 à No corrosion observed in explanted MP stents 18

  19. SEM Imaging – Air Furnace (low F2129) Explant Non-implanted 19

  20. SEM Imaging – Air Furnace (low F2129) Ni/Ti 1.01- 1.06 Ni/Ti Ni/Ti 0.81- Ni/Ti 1.06 0.89 0.90 Ni/Ti n 1.11 AF Non-implanted 13 +/- 0.02 1.08 AF Explants - Native Surface 22 +/- 0.05 0.89 AF Explants – Corrosion 24 +/- 0.15 à Micro-cracks & corrosion observed in explanted AF stents 20

  21. SEM Imaging – Oxidized Tubing (low F2129) Non-implanted Explant 21

  22. SEM Imaging – Oxidized Tubing (low F2129) Ni/Ti Ni/Ti 1.0-1.38 1.22-1.26 Ni/Ti 0.98-1.15 Ni/Ti Ni/Ti Ni/Ti 1.06-1.09 1.15-1.20 1.06 Ni/Ti n 1.16 OT Non-implanted 20 +/- 0.10 1.05 OT Explants - Native Surface 32 +/- 0.31 1.14 OT Explants – Corrosion 59 +/- 0.11 à Pitting observed in explanted OT stents 22

  23. Corrosion Depth (FIB milling) AF Stent OT Stent OT à ~9 micron deep pits AF à ~1 micron deep corrosion 23

  24. Elemental Analysis Summary • SP and MP explants: no change in Ni/Ti ratios • AF explants: sig. lower Ni/Ti ratios in corroded regions • OT explants: similar Ni/Ti ratios in corroded regions * 1.4 * * 1.2 Non- implanted 1 Ni/Ti ratio Explant - 0.8 General 0.6 Explant - Corrosion 0.4 Explant - 0.2 Pitting * p ≤ 0.05 0 SP MP AF OT 24

  25. Discussion 25

  26. Conclusions Bench Testing Correlations • Ni release (uniform corrosion) is not correlated to breakdown potentials from ASTM F2129 testing • Oxide thickness and composition provides insight into Ni release 26

  27. Discussion In-vivo Corrosion 27

  28. Conclusions Bench Testing Correlations • Ni release (uniform corrosion) is not correlated to breakdown potentials from ASTM F2129 testing • Oxide thickness and composition provides insight into Ni release In-vitro to In-vivo Correlations • Ni release • In-vitro : OT > SP > AF > MP (uniform corrosion) • In-vivo : OT > AF > SP > MP (localized + uniform corrosion) • Pitting Corrosion • E b > ~600 mV à no localized corrosion observed • E b < ~200 mV à localized corrosion observed 28

  29. Acknowledgements • Matthew Di Prima, PhD • Phillip Stafford, PhD • Elon Malkin, PhD • Jiwen Zheng, PhD • Ramesh Marrey, PhD • Chris Lasley • Ron Waxman, MD • David Hellinga, MS 29

  30. Upcoming features: Biologics Overlapped stents SP MP AF Inflammati on OT Inflammati on 30

  31. Conclusions Bench Testing Correlations • Ni release (uniform corrosion) is not correlated to breakdown potentials from ASTM F2129 testing • Oxide thickness and composition provides insight into Ni release In-vitro to In-vivo Correlations • Ni release • In-vitro : OT > SP > AF > MP (uniform corrosion) • In-vivo : OT > AF > SP > MP (localized + uniform corrosion) • Pitting Corrosion • E b > ~600 mV à no localized corrosion observed • E b < ~200 mV à localized corrosion observed 31

Recommend


More recommend