in the hh b
play

IN THE hh b USING THE ATLAS DETECTOR 2 August 2017 Benjamin - PowerPoint PPT Presentation

SEARCH FOR EXOTIC DIHIGGS PRODUCTION bWW DECAY CHANNEL IN THE hh b USING THE ATLAS DETECTOR 2 August 2017 Benjamin Tannenwald q q b DIHIGGS SEARCH Search for non-resonant (SM) and resonant (exoc) dihiggs producon in b


  1. SEARCH FOR EXOTIC DIHIGGS PRODUCTION bWW ∗ DECAY CHANNEL IN THE hh → b ¯ USING THE ATLAS DETECTOR 2 August 2017 Benjamin Tannenwald

  2. q q b DIHIGGS SEARCH → Search for non-resonant (SM) and resonant (exo�c) dihiggs produc�on in b bWW ∗ final state the b ¯ ¯ b → Second highest branching frac�on a�er hh → b ¯ bb ¯ h m h → Analysis in semileptonic decay h bWW ∗ → b ¯ channel, i.e. b ¯ b ℓν q ¯ W (*) m W → Three selec�on strategies: m h l non-resonant, low resonant mass, high W (*) resonant mass ν m W → Require one charged lepton ( e , µ ), ≥ 4 q q jets, = 2 b-tags bWW ∗ → b ¯ → First search using b ¯ b ℓν q ¯ final state 1/15

  3. DATASET + OBJECT SELECTION → Use 36.5 � − 1 of data from 13 TeV proton-proton collisions recorded by the ATLAS detector in 2015-2016 → Monte Carlo simula�ons used for dihiggs signal, t ¯ t , W+jets, Z+jets, diboson, and single top backgrounds → t ¯ t normaliza�on calculated using data in control region → Data-driven ABCD method used to es�mate mul�-jet QCD background Object Selec�on Event Selec�on Lepton trigger Lepton: p ℓ T > 27 GeV, | η ℓ | < 2.5, At least 1 primary vertex with ≥ 5 tracks track-based isola�on Jets: An�- k T R=0.4 jets, p jet N ℓ = 1 T > 20 GeV, | η jet | < N jets ≥ 4 2.5, | JVF | > 0.59, 85% b -tagging efficiency Categorize by N b -tags = 2 MET: MET ≥ 25 GeV → Create m b ¯ b control region (m b ¯ b < 100, m b ¯ b > 140 GeV) to validate techniques and op�mize search strategies for resonant and non-resonant hh produc�on → Blind signal region (100 < m b ¯ b < 140 GeV) to avoid bias 2/15

  4. EVENT RECONSTRUCTION Largest background contribu�ons come from t ¯ t and mul�-jet processes 3/15

  5. b p WW EVENT SELECTION Variable Non-resonant Low-mass High-mass MET [GeV] > 25 [GeV] > 250 T m b ¯ b [GeV] 105 − 135 m WW [GeV] < 130 < 130 no cut p b ¯ T [GeV] > 300 > 210 > 350 ∆ R WW no cut no cut < 1 . 5 [625 , 775] † [1910 , 2170] † m hh [GeV] no cut → Selec�on variables differ between analysis strategies → Variables and cuts chosen by calcula�ng Poisson signifiance (including systema�cs) at end of each selec�on → † - m hh cuts are dependent on resonance mass under considera�on → Two cut windows are shown above for for 700 GeV (low-mass) resonance and 2000 GeV (high-mass) resonance 4/15

  6. QCD ESTIMATION: ABCD METHOD → Mul�-jet backgrounds enter event selec�on due to jets mis-iden�fied as leptons and non-prompt lepton produc�on → Such processes not well-modeled by simula�on, so use data-driven ABCD method to es�mate contribu�ons in selected phase space → ABCD es�ma�on is a 2D sideband method where the signal region, A, has two (uncorrelated) cuts inverted to create three independent control regions → Using | d 0 / σ d 0 | and MET as independent ABCD variables 5 | 0 d σ 4.5 / 0 Lepton |d → A region: | d 0 / σ d 0 | < 2.0 4 D C and MET > 25 GeV 3.5 3 → B region: | d 0 / σ d 0 | < 2.0 2.5 and MET < 25 GeV 2 → C region: | d 0 / σ d 0 | > 2.0 1.5 and MET > 25 GeV 1 B A 0.5 → D region: | d 0 / σ d 0 | > 2.0 0 and MET < 25 GeV 0 20 40 60 80 100 120 140 160 180 200 Missing Transverse Energy [GeV] 5/15

  7. B D A C D B C A i i A i QCD ESTIMATION: ABCD CALCULATION To es�mate N non-prompt ( N non-prompt − N All MC Bkgs = N Data ), the following formula is used: · N non-prompt N non-prompt = R · N non-prompt N non-prompt → Assump�on is that difference in behavior between B and D regions is iden�cal to difference between A and C regions N non-prompt N non-prompt → Ra�o a�er 1 st cut ≡ R applied to subsequent QCD yields N non-prompt N non-prompt 5 | 0 d σ 4.5 / 0 → QCD (non-prompt) shape in Lepton |d 4 C region taken to be shape D C 3.5 in A region 3 2.5 → Freeze B and D regions at 2 early stage in cu�low to 1.5 reduce sta�s�cal error in 1 B A final es�ma�on 0.5 0 0 20 40 60 80 100 120 140 160 180 200 Missing Transverse Energy [GeV] 6/15

  8. b CONTROL REGION KINEMATICS (NON-RESONANT + LOW-MASS) Events Events 500 ATLAS Work In Progress ATLAS Work In Progress 350 Data Data ∫ ∫ -1 -1 Ldt = 36.5 fb s = 13 TeV Ldt = 36.5 fb s = 13 TeV 300 hh(NonRes)X5 hh(NonRes)X5 hh → WWbb, mBBcr, bbpt > 210 hh → WWbb, mBBcr, bbpt > 210 400 250 Dibosons Dibosons 300 SingleTop SingleTop 200 Z+jets Z+jets 150 200 QCD QCD 100 100 W+jets W+jets 50 t t t t 0 0 0.8 0.8 (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg 0.6 0.6 0.4 0.4 Stat Stat 0.2 0.2 0 0 0.2 0.2 Stat+Sys Stat+Sys − − − 0.4 − 0.4 − 0.6 − 0.6 − 0.8 − 0.8 0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800 900 1000 m [GeV] m [GeV] T bb → Distribu�ons above in m b ¯ b control region a�er requiring m WW < 130 GeV and p b ¯ T > 210 GeV → m W T (le�) shows Data/Bkg agreement consistent within error using ABCD es�ma�on → m b ¯ b (right) shows backgrounds well modeled in m b ¯ b sideband 7/15

  9. b CONTROL REGION KINEMATICS (HIGH MASS) Events Events 4500 ATLAS Work In Progress ATLAS Work In Progress 3500 Data Data ∫ ∫ -1 -1 Ldt = 36.5 fb s = 13 TeV 4000 Ldt = 36.5 fb s = 13 TeV hh(m_X 2000)X5 hh(m_X 2000)X5 3000 hh → WWbb, mBBcr, bbpt > 350 hh → WWbb, mBBcr, bbpt > 350 3500 Dibosons Dibosons 2500 3000 SingleTop SingleTop 2500 2000 2000 Z+jets Z+jets 1500 1500 QCD QCD 1000 1000 W+jets W+jets 500 500 t t t t 0 0 0.8 0.8 (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg 0.6 0.6 0.4 0.4 Stat Stat 0.2 0.2 0 0 0.2 0.2 Stat+Sys Stat+Sys − − − 0.4 − 0.4 − 0.6 − 0.6 − 0.8 − 0.8 0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800 900 1000 m [GeV] m [GeV] T bb b control region a�er requiring p b ¯ → Distribu�ons above in m b ¯ T > 350 GeV → m W T (le�) shows Data/Bkg agreement consistent within error using ABCD es�ma�on → m b ¯ b (right) shows backgrounds well modeled in m b ¯ b sideband 8/15

  10. b t t p WW b CONTROL REGION EVENT YIELDS: NON-RESONANT Top Control Region: m b ¯ b Sideband p b ¯ p b ¯ Sample m WW < 130 T > 210 T > 300 > 250 m b ¯ b Window T t ¯ 23776.6 ± 87.2 531.7 ± 13.1 109.9 ± 5.9 63.9 ± 4.6 0.0 ± 0.0 QCD 13310.5 ± 500.3 250.2 ± 30.6 33.7 ± 4.1 21.4 ± 2.6 0.0 ± 0.0 W+jets 3938.9 ± 31.1 124.7 ± 3.5 29.3 ± 1.4 17.1 ± 1.1 0.0 ± 0.0 Single Top 1605.4 ± 18.0 76.0 ± 3.8 20.1 ± 2.0 13.5 ± 1.7 0.0 ± 0.0 Diboson 109.9 ± 2.7 8.3 ± 0.8 2.2 ± 0.4 1.5 ± 0.4 0.0 ± 0.0 Z+jets 1107.6 ± 8.4 27.1 ± 0.8 6.7 ± 0.4 2.4 ± 0.2 0.0 ± 0.0 Background Sum 43849.0 ± 509.2 1017.9 ± 33.7 201.9 ± 7.6 119.8 ± 5.7 0.0 ± 0.0 Non-resonant hh 44.6 ± 2.2 9.1 ± 0.7 1.5 ± 0.2 1.1 ± 0.1 0.0 ± 0.0 Data 43902.0 1069.0 206.0 138.0 0.0 Signal Region: 100 < m b ¯ b < 140 GeV t ¯ 7461.0 ± 48.6 162.9 ± 7.3 27.9 ± 2.9 18.4 ± 2.4 15.4 ± 2.2 QCD 2756.2 ± 210.5 48.7 ± 14.2 6.6 ± 1.9 4.2 ± 1.2 3.6 ± 1.6 W+jets 640.8 ± 12.7 19.1 ± 1.4 5.0 ± 0.6 3.1 ± 0.5 2.3 ± 0.4 Single Top 452.2 ± 9.6 14.3 ± 1.7 1.7 ± 0.5 1.0 ± 0.4 0.6 ± 0.3 Diboson 21.6 ± 1.3 0.6 ± 0.2 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 Z+jets 262.8 ± 4.4 3.1 ± 0.3 1.0 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 Background Sum 11594.7 ± 216.7 248.6 ± 16.1 42.6 ± 3.6 27.0 ± 2.8 22.1 ± 2.8 Non-resonant hh 68.3 ± 2.4 20.7 ± 0.9 6.7 ± 0.4 5.5 ± 0.3 4.8 ± 0.3 Data — — — — — → RED is m b ¯ b control region, BLUE is final signal region → Non-resonant signal normalized to ATLAS 8 TeV upper limit (0.59 pb) → Uncertain�es are sta�s�cal only 9/15

  11. t b t p WW CONTROL REGION EVENT YIELDS: LOW-MASS Top Control Region: m b ¯ b Sideband p b ¯ Sample m WW < 130 T > 210 > 250 m hh Window m b ¯ b Window T t ¯ 23776.6 ± 87.2 531.7 ± 13.1 175.6 ± 7.5 34.4 ± 3.3 0.0 ± 0.0 QCD 13310.5 ± 500.3 250.2 ± 30.6 72.4 ± 8.9 16.3 ± 2.0 0.0 ± 0.0 W+jets 3938.9 ± 31.1 124.7 ± 3.5 45.7 ± 2.1 8.7 ± 1.1 0.0 ± 0.0 Single Top 1605.4 ± 18.0 76.0 ± 3.8 28.4 ± 2.4 5.1 ± 1.0 0.0 ± 0.0 Diboson 109.9 ± 2.7 8.3 ± 0.8 2.8 ± 0.5 0.5 ± 0.2 0.0 ± 0.0 Z+jets 1107.6 ± 8.4 27.1 ± 0.8 5.8 ± 0.4 1.2 ± 0.2 0.0 ± 0.0 Background Sum 43849.0 ± 509.2 1017.9 ± 33.7 330.7 ± 12.1 66.2 ± 4.1 0.0 ± 0.0 4.2 ± 0.2 2.2 ± 0.1 1.5 ± 0.1 0.6 ± 0.1 0.0 ± 0.0 m H = 700 Data 43902.0 1069.0 367.0 89.0 0.0 Signal Region: 100 < m b ¯ b < 140 GeV t ¯ 7461.0 ± 48.6 162.9 ± 7.3 61.5 ± 4.7 12.4 ± 1.9 7.6 ± 1.4 QCD 2756.2 ± 210.5 48.7 ± 14.2 14.1 ± 4.1 3.2 ± 0.9 2.8 ± 1.2 W+jets 640.8 ± 12.7 19.1 ± 1.4 9.7 ± 1.1 2.9 ± 0.6 1.6 ± 0.4 Single Top 452.2 ± 9.6 14.3 ± 1.7 2.6 ± 0.7 0.5 ± 0.2 0.3 ± 0.2 Diboson 21.6 ± 1.3 0.6 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 Z+jets 262.8 ± 4.4 3.1 ± 0.3 0.6 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 Background Sum 11594.7 ± 216.7 248.6 ± 16.1 88.7 ± 6.4 19.2 ± 2.2 12.6 ± 1.9 m H = 700 9.2 ± 0.3 7.8 ± 0.2 5.9 ± 0.2 3.8 ± 0.2 3.4 ± 0.2 Data — — — — — → RED is m b ¯ b control region, BLUE is final signal region → Resonant m H = 700 GeV cross-sec�on normalized to ATLAS 8 TeV upper limit (0.044 pb) → Uncertain�es are sta�s�cal only 10/15

Recommend


More recommend