improving pd and lgd models following the changes in the
play

Improving PD and LGD models following the changes in the market - PowerPoint PPT Presentation

Improving PD and LGD models following the changes in the market Wemke van der Weij Marcel den Hollander Wemke.vanderWeij@SNSREAAL.nl Marcel.denHollander@SNSREAAL.nl Credit Scoring Conference 2009 - Edinburgh Agenda Introduction Basel


  1. Improving PD and LGD models following the changes in the market Wemke van der Weij Marcel den Hollander Wemke.vanderWeij@SNSREAAL.nl Marcel.denHollander@SNSREAAL.nl Credit Scoring Conference 2009 - Edinburgh

  2. Agenda • Introduction • Basel II • Modelling: Rating • Modelling: Level • Conclusion - 2 -

  3. Introduction - 3 -

  4. Introduction • SNS Bank – Among the largest banking companies in The Netherlands – Balance sheet total of € 77 billion – 3245 employees (FTEs) • Corporate staff: Group Risk Management – Credit Risk Management - 4 -

  5. Credit Risk is real... - 5 -

  6. Managing Credit Risk Acceptation Scorecard Behaviour models • Current customers • New prospects • Not required for Basel II • Required for Basel II • Decision to accept • Capital requirements IN OUT - 6 -

  7. But… not always accurate Realisation versus estimate 20% 18% 16% 14% Percentage 12% 10% Realisation 8% 6% 4% Estimate 2% 0% 200611 200612 200701 200702 200703 200704 200705 200706 200707 200708 200709 200710 200711 200712 Month Note that the figures in the presentation do not correspond to actual data - 7 -

  8. Basel II - 8 -

  9. Key Measures used in Basel II • Default • PD: Probability of Default • LGD: Loss Given Default General Terminology • EAD: Exposure at Default • EL: Expected Loss • UL: Unexpected Loss • ELT: Economic Loss Term • DR: Default Rate SNS Terminology • RLR: Realised Loss Rate - 9 - - 9 -

  10. Conceptual example of default recovery write-off EAD NPV(Loss) Default End of default Period t NPV d (Loss) RLR = EAD - 10 -

  11. Framework Non- Defaults Defaults EL = LGD Loss Given Default model LGD X Best Estimate model PD Probability of Default model PD fixed X 100% EAD Exposure at Default estimate - 11 - - 11 -

  12. Modelling: Rating - 12 -

  13. Risk Factors Credit risk Client Loan Profile Product Payment behaviour Securities - 13 -

  14. Clients are categorised in buckets 35,00% 35.000 30,00% 30.000 25,00% 25.000 20,00% 20.000 15,00% 15.000 10,00% 10.000 5,00% 5.000 0,00% - 1 2 3 4 5 6 Customers (#) RLR LGD • Buckets have strictly increasing estimate (LGD or PD) • Sufficient observations needed to create buckets - 14 -

  15. Modelling: Level - 15 -

  16. Scoring in pools versus estimated value Client and loan characteristics Score for each client based on the characteristics Score are categorized in risk classes (buckets) Each bucket gets an estimated value for the risk - 16 -

  17. Estimated values How can we get these values Commonly based on historical data up to date? Example PD pools LGD pools 1 0.01 % 1 0.02% 2 0.05 % 2 0.09% 3 0.20% 3 0.50% 4 1.00% 4 2.10% 5 2.00% 5 7.00% 6 8.00% 6 13.00% 7 15.00% 7 18.00% 8 25.00% 8 30.00% - 17 -

  18. Calibration of the estimated value Layers – Client (1) – Risk buckets (2) (1) – Portfolio (3) Frequency – monthly – quarterly (2) – yearly (3) Average Value Estimated - 18 -

  19. Realisation matrix (observed in the x th month) Period \ month 1 2 3 4 5 6 7 8 … 22 23 24 >24 200711 3.4 3.2 1.2 1.5 0.9 0.5 0.2 0.0 0.0 0.2 0.1 0.0 200712 6.2 4.2 1.3 1.3 1.1 0.4 0.3 0.6 0.0 0.1 0.2 0.0 200801 2.3 2.3 1.9 1.2 0.7 1.2 0.4 0.1 0.1 0.0 0.1 0.1 200811 2.3 4.3 2.3 1.2 0.8 2.2 0.1 0.0 200812 3.5 3.4 2.1 3.2 1.0 0.2 0.6 0.3 200901 3.2 4.5 2.2 0.9 1.2 0.6 0.2 0.1 200902 3.4 4.2 1.2 2.1 0.4 0.1 0.3 200903 1.7 3.2 1.9 1.2 0.8 0.7 200904 2.3 1.9 2.6 1.1 1.0 200905 3.4 4.2 2.1 1.4 200906 5.4 2.1 2.3 Not observable at the 200907 3.4 5.5 period 200909 200908 4.4 200909 PD: clients observed in 200902 and in default in the 3 rd month LGD: clients in default in 200902 and recovered / lost in the 3 rd month - 19 -

  20. How to deal with Economic Loss Term a default with a very long default period Period \ 1 2 3 4 5 6 7 8 … 22 23 24 >24 month 200711 3.4 3.2 1.2 1.5 0.9 0.5 0.2 0.0 0.0 0.2 0.1 0.0 200712 6.2 4.2 1.3 1.3 1.1 0.4 0.3 0.6 0.0 0.1 0.2 0.0 200801 2.3 2.3 1.9 1.2 0.7 1.2 0.4 0.1 0.1 0.0 0.1 0.1 200811 2.3 4.3 2.3 1.2 0.8 2.2 0.1 0.0 Estimate the loss 200812 3.5 3.4 2.1 3.2 1.0 0.2 0.6 0.3 200901 3.2 4.5 2.2 0.9 1.2 0.6 0.2 0.1 200902 3.4 4.2 1.2 2.1 0.4 0.1 0.3 200903 1.7 3.2 1.9 1.2 0.8 0.7 200904 2.3 1.9 2.6 1.1 1.0 200905 3.4 4.2 2.1 1.4 200906 5.4 2.1 2.3 200907 3.4 5.5 200908 4.4 200909 - 20 -

  21. Realisation matrix (observed in the x th month) Period \ month 1 2 3 4 5 6 7 8 … 22 23 24 >24 200711 3.4 3.2 1.2 1.5 0.9 0.5 0.2 0.0 0.0 0.2 0.1 0.0 SUM X t 200712 6.2 4.2 1.3 1.3 1.1 0.4 0.3 0.6 0.0 0.1 0.2 0.0 SUM X t+1 200801 2.3 2.3 1.9 1.2 0.7 1.2 0.4 0.1 0.1 0.0 0.1 0.1 200811 2.3 4.3 2.3 1.2 0.8 2.2 0.1 0.0 SUM X t+1 200812 3.5 3.4 2.1 3.2 1.0 0.2 0.6 0.3 200901 3.2 4.5 2.2 0.9 1.2 0.6 0.2 0.1 200902 3.4 4.2 1.2 2.1 0.4 0.1 0.3 200903 1.7 3.2 1.9 1.2 0.8 0.7 200904 2.3 1.9 2.6 1.1 1.0 200905 3.4 4.2 2.1 1.4 200906 5.4 2.1 2.3 200907 3.4 5.5 200908 4.4 200909 Historic data used for calibration - 21 -

  22. How to use the realisations • Linear regression – a x + b = y – a = 1 and x +b =y ⇒ linear trend taken • Moving Average – 1/n Sum (x) =y ⇒ average over the last n observations • Exponential Smoothing – a y(t) = x(t) + (1- a)y(t-1) =>weighted moving average - 22 -

  23. Realisation matrix (observed in the x th month) Period \ month 1 2 3 4 5 6 7 8 … 22 23 24 >24 200711 3.4 3.2 1.2 1.5 0.9 0.5 0.2 0.0 0.0 0.2 0.1 0.0 200712 6.2 4.2 1.3 1.3 1.1 0.4 0.3 0.6 0.0 0.1 0.2 0.0 200801 2.3 2.3 1.9 1.2 0.7 1.2 0.4 0.1 0.1 0.0 0.1 0.1 200811 2.3 4.3 2.3 1.2 0.8 2.2 0.1 0.0 200812 3.5 3.4 2.1 3.2 1.0 0.2 0.6 0.3 200901 3.2 4.5 2.2 0.9 1.2 0.6 0.2 0.1 200902 3.4 4.2 1.2 2.1 0.4 0.1 0.3 200903 1.7 3.2 1.9 1.2 0.8 0.7 200904 2.3 1.9 2.6 1.1 1.0 200905 3.4 4.2 2.1 1.4 200906 5.4 2.1 2.3 200907 3.4 5.5 200908 4.4 200909 X t X t+1 Historic data used for calibration - 23 -

  24. Which is the best Root mean square error 1 n ( ) ∑ 2 − y z t t n 1 t = Mean square error 1 n ∑ − y z t t n 1 t = Mean absolute percentage error 1 − y z n ∑ t t n z 1 t = t - 24 -

  25. Results for moving average (LGD) - 25 -

  26. Results for moving average (LGD) - 26 -

  27. Conclusion • Basel II – guidelines → credit risk models • Observed – Realisations versus estimates • Calibration is needed – Using historical data avoiding the performance period • Case study Remarks • ELT • Macro economic variables - 27 -

Recommend


More recommend