COMP 546 Lecture 8 image motion 2 Tues. Feb. 6, 2018 1
Overview of Today โข Abstract computational problem: how to estimate the local image velocity ? โข Solution based on V1 motion detectors 2
Intensity changes in XY ๐ ๐ ๐๐ฆ ๐ฝ ๐ฆ, ๐ง , ๐๐ง ๐ฝ ๐ฆ, ๐ง ) ( is the 2D spatial gradient at ๐ฆ, ๐ง . ๐ง + - + + - + - - โ ๐ฝ - + + - ๐ฆ 3
Intensity changes in XYT ๐ ๐ ๐ ๐๐ฆ ๐ฝ ๐ฆ, ๐ง, ๐ข , ๐๐ง ๐ฝ ๐ฆ, ๐ง, ๐ข , ๐๐ข ๐ฝ ๐ฆ, ๐ง, ๐ข ) ( is the 3D spatio-temporal gradient at ๐ฆ, ๐ง, ๐ข . ๐ง โ ๐ฝ ๐ข ๐ฆ 4
Suppose that image โobjectsโ are โmovingโ. (What do these terms mean?) ๐ค ๐ฆ , ๐ค ๐ง (๐ฆ, ๐ง, ๐ข) 5
Intensity conservation Assume a moving pointโs intensity doesnโt change over time. ๐ฝ ๐ฆ, ๐ง, ๐ข = ๐ฝ ๐ฆ + ๐ค ๐ฆ โ๐ข, ๐ง + ๐ค ๐ง โ๐ข, ๐ข + โ๐ข This is similar to the assumption made last lecture, namely that the left and right images are related by a (disparity) shift. 6
Taylor series ๐ฝ ๐ฆ + ๐ค ๐ฆ โ๐ข, ๐ง + ๐ค ๐ง โ๐ข, ๐ข + โ๐ข ๐ = ๐ฝ ๐ฆ, ๐ง, ๐ข + ๐๐ฆ ๐ฝ ๐ฆ, ๐ง, ๐ข ๐ค ๐ฆ โ๐ข ๐ + ๐๐ง ๐ฝ ๐ฆ, ๐ง, ๐ข ๐ค ๐ง โ๐ข ๐ + ๐๐ข ๐ฝ ๐ฆ, ๐ง, ๐ข โ๐ข + H.O.T. 7
๐ฝ ๐ฆ + โ๐ฆ โ ๐ฝ ๐ฆ + ๐๐ฝ ๐๐ฆ โ๐ฆ ๐ฆ ๐ฆ + โ๐ฆ ๐๐ฝ ๐ฝ ๐ฆ + 1 โ ๐ฝ(๐ฆ โ 1) We can estimate by taking . ๐๐ฆ 2 8
๐๐๐จ๐๐๐ฆ ๐๐๐๐๐ฏ๐ญ๐ ๐ฉ๐ ๐ฃ๐จ๐ฎ๐๐จ๐ญ๐ฃ๐ฎ๐ณ ๐๐ฉ๐จ๐ญ๐๐ฌ๐ฐ๐๐ฎ๐ฃ๐ฉ๐จ ๐ฝ ๐ฆ + ๐ค ๐ฆ โ๐ข, ๐ง + ๐ค ๐ง โ๐ข, ๐ข + โ๐ข ๐ = ๐ฝ ๐ฆ, ๐ง, ๐ข + ๐๐ฆ ๐ฝ ๐ฆ, ๐ง, ๐ข ๐ค ๐ฆ โ๐ข ๐ + ๐๐ง ๐ฝ ๐ฆ, ๐ง, ๐ข ๐ค ๐ง โ๐ข โ 0 ๐ + ๐๐ข ๐ฝ ๐ฆ, ๐ง, ๐ข โ๐ข + H.O.T. 9
โMotion Constraint Equationโ Previous slides (and assumptions) imply: ๐ ๐ฝ ๐ ๐ฝ ๐ ๐ฝ ๐ค ๐ฆ + ๐๐ง ๐ค ๐ง + ๐๐ข = 0 ๐๐ฆ ( ๐ ๐ฝ ๐๐ฆ , ๐ ๐ฝ ๐๐ง , ๐ ๐ฝ ๐๐ข ) โ ( ๐ค ๐ฆ , ๐ค ๐ง , 1 ) = 0 10
Motion constraint equation is a line in velocity space ๐ ๐ฝ ๐ค ๐ฆ + ๐ ๐ฝ ๐ ๐ฝ ๐๐ง ๐ค ๐ง + ๐๐ข = 0 ๐๐ฆ ๐ค ๐ง ๐ค ๐ฆ 11
๐ ๐ฝ ๐ ๐ฝ ๐ ๐ฝ ๐ค ๐ฆ + ๐๐ง ๐ค ๐ง + ๐๐ข = 0 ๐๐ฆ But many velocities satisfy this equation. ๐ค ๐ง ๐ค ๐ฆ 12
๐ ๐ฝ ๐ ๐ฝ ๐ ๐ฝ ๐๐ฆ , ๐๐ง , ๐๐ข ) โ ( ๐ค ๐ฆ , ๐ค ๐ง , 1 ) = 0 ( The black vector in the figure below is the 3D image gradient. It is perpendicular to the gray plane. The red vectors are perpendicular to the 3D image gradient (see equation) and thus the red vectors lie in the grey plane. ๐ง ๐ข ๐ฆ 13
Normal velocity ๐ ๐ฝ ๐ ๐ฝ ๐ ๐ฝ ๐ค ๐ฆ + ๐๐ง ๐ค ๐ง + ๐๐ข = 0 ๐๐ฆ ๐ค ๐ง โNormal velocityโ is the velocity component in the direction of the XY ๐ค ๐ฆ gradient. 14
โAperture Problemโ The same issue arises with any 1D pattern e.g. single bar, edge, constant gradient. 15
Solution of Aperture Problem We need more than one line or edge (or gradient orientation). normal velocities shown Could be in the same aperture or neighboring aperture. 16
โIntersection of Constraintsโ (IOC) Suppose two nearby points have two different spatial gradients and the same image velocity . ๐ค ๐ง normal velocities shown ๐ค ๐ฆ 17
Intersection of Constraints (IOC) ๐ ๐ฝ ๐ ๐ฝ ๐ ๐ฝ ๐๐ฆ (๐ฆ 1 , ๐ง 1 , ๐ข) ๐ค ๐ฆ + ๐๐ง (๐ฆ 1 , ๐ง 1 , ๐ข) ๐ค ๐ง + ๐๐ข (๐ฆ 1 , ๐ง 1 , ๐ข) = 0 ๐ ๐ฝ ๐ ๐ฝ ๐ ๐ฝ ๐๐ฆ (๐ฆ 2 , ๐ง 2 , ๐ข) ๐ค ๐ฆ + ๐๐ง (๐ฆ 2 , ๐ง 2 , ๐ข) ๐ค ๐ง + ๐๐ข (๐ฆ 2 , ๐ง 2 , ๐ข) = 0 ๐ค ๐ง IOC gives a unique solution. ๐ค ๐ฆ 18
Another Example (counterintuitive) ๐ค ๐ง ๐ค ๐ฆ 19
Overview of Today โข Abstract computational problem: how to estimate the local image velocity ? โข Solution based on V1 motion detectors 20
Recall: XYT Gabor 2๐ 2๐ sin ๐ (๐ 0 ๐ฆ + ๐ 1 ๐ง) + ๐ ๐ ๐ข ๐ป(๐ฆ, ๐ง, ๐ข, ๐ ๐ฆ , ๐ ๐ง , ๐ ๐ข ) ๐ง ๐ฆ sin 2๐ ๐ (๐ 0 ๐ฆ + ๐ 1 ๐ง) + 2๐ ๐ ๐ ๐ข ๐ข ๐ง ๐ฆ ๐ง ๐ข ๐ข 2๐ 2๐ cos ๐ (๐ 0 ๐ฆ + ๐ 1 ๐ง) + ๐ ๐ ๐ข ๐ป(๐ฆ, ๐ง, ๐ข, ๐ ๐ฆ , ๐ ๐ง , ๐ ๐ข ) ๐ฆ 21
We should get maximum response from a Gabor whose frequency (๐ 0 , ๐ 1 , ๐ ) is parallel to intensity gradient. (2๐ ๐ ๐ 0 , 2๐ 2๐ ๐ ๐ ๐ ๐๐ฆ ๐ฝ , ๐๐ง ๐ฝ, ๐๐ข ๐ฝ ) ( ๐ ๐ 1 , ๐ ๐ ) ๐ง ๐ข ๐ฆ 22
Each motion sensitive V1 cell is sensitive only to the 1D motion component perpendicular to its orientation. 23
Suppose true motion vector ๐ค ๐ฆ , ๐ค ๐ง is toward the right and the image contains lots of oriented structure in each local neighborhood. Which V1 motion cells would have a large response ? ๐ค ๐ง ๐ค ๐ฆ 24
Suppose true motion vector ๐ค ๐ฆ , ๐ค ๐ง is toward the right and the image contains lots of oriented structure in each local neighborhood. Which V1 motion cells would have a large response ? ๐ค ๐ง ๐ค ๐ฆ 25
Suppose true motion vector ๐ค ๐ฆ , ๐ค ๐ง is toward the right and the image contains lots of oriented structure in each local neighborhood. Which V1 motion cells would have a large response ? ๐ค ๐ง ๐ค ๐ฆ 26
Suppose true motion vector ๐ค ๐ฆ , ๐ค ๐ง is toward the right and the image contains lots of oriented structure in each local neighborhood. Which V1 motion cells would have a large response ? ๐ค ๐ง ๐ค ๐ฆ 27
Motion pathway in the brain (contains V1) MST โต MT โต V1 (temporal lobe contains motion area MT and MST : โmiddle temporalโ & โmedial superior temporalโ) (next lecture) (today) 28
V1 โ MT ๐ค ๐ง MT cells receive inputs from orientation/motion tuned V1 cells. Many MT cells are velocity ๐ค ๐ฆ tuned . They require multiple orientations in their receptive field (to avoid the aperture problem). 29
V1 โ MT ๐ค ๐ง MT cells receive inputs from orientation/motion tuned V1 cells. Many MT cells are velocity ๐ค ๐ฆ tuned . They require multiple orientations in their receptive field (to avoid the aperture problem). 30
V1 โ MT ๐ค ๐ง For any velocity vector, there is a family of orientation/motion tuned V1 cells that would respond well, provided ๐ค ๐ฆ the moving image contains the spatial orientaiton that this cell is sensitive to. 31
Gabors can have different sizes and spatial frequencies. dot pattern and velocity For full version of the MT model, see [Simoncelli and Heeger Vision Research 1998] 32
Random dot patterns (such as above) contain oriented structure at all frequencies. Later in the course when we discuss linear systems and Fourier transforms, you will learn a more formal (mathematical) statement of what this means. 33
Recommend
More recommend