ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018
Lecture Tue.2 Maximally-localized Wannier functions Giovanni Pizzi 1 , Antimo Marrazzo 1 , Valerio Vitale 2 1 Ti eory and Simulation of Materials, EPFL (Switzerland) 2 Cavendish Laboratory, Department of Physics, University of Cambridge (UK) School on Electron-Phonon Physics from First Principles Trieste, March 20th, 2018
References • Marzari, N., and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997) • Souza, I., N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001) • N. Marzari et al., Rev. Mod. Phys. 84, 1419–1475 (2012) • R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge, 2004 • www.wannier.org • First part of the slides: courtesy of Prof. Nicola Marzari. Can be found on the Wannier90 website: www.wannier.org under User Guide > NSF Summer School 2009 > N. Marzari Lecture Slides
PART I Wannier functions
Bloch Theorem Crystal in real space: Brillouin zone in reciprocal space: – π /a 0 π /a k Courtesy of I. Souza / D. Vanderbilt
<latexit sha1_base64="qLkqiWiHzvbYZf5ukltPQ9m19Nk=">ACW3icbZBNSxBEIZrx+/xI6viKZcmi6CXZUYC6iEg6iHDWSjsDMuPT212mx/DN09hqWZP+Sv8WoO+S2Z2R1C1LzQ8PJUFVX9ZoXg1kXRSydYWl5ZXVvfCDe3tnc+dHf3flhdGoZDpoU2txm1KLjCoeNO4G1hkMpM4E02vWrqN49oLNfqu5sVmEp6r/iEM+pqNO5eJwPLx14lj8j8tKqOGkPMflCyhaT6V+Kd54vUMJy7cgCV+NuL+pHc5H3Jm5ND1oNxrsdSHLNSonKMUGtHcVR4VJPjeNMYBUmpcWCsim9x1FtFZVoUz/bkUOa5KTiTb1U47M6b8TnkprZzKrOyV1D/ZtrYH/q41KNzlLPVdF6VCxaJKYjTpMmO5Nwgc2JWG8oMr28l7IEaylyd8KstmazCMDGo8CfTUlKVN1GN4tQnmfS9uGoyi98m9N4MT/rn/ejb597FZRveOnyET3AEMZzCBXyFAQyBwRM8wv86vwOloMw2Fq0Bp12Zh9eKTj4AzT/tZ4=</latexit> <latexit sha1_base64="qLkqiWiHzvbYZf5ukltPQ9m19Nk=">ACW3icbZBNSxBEIZrx+/xI6viKZcmi6CXZUYC6iEg6iHDWSjsDMuPT212mx/DN09hqWZP+Sv8WoO+S2Z2R1C1LzQ8PJUFVX9ZoXg1kXRSydYWl5ZXVvfCDe3tnc+dHf3flhdGoZDpoU2txm1KLjCoeNO4G1hkMpM4E02vWrqN49oLNfqu5sVmEp6r/iEM+pqNO5eJwPLx14lj8j8tKqOGkPMflCyhaT6V+Kd54vUMJy7cgCV+NuL+pHc5H3Jm5ND1oNxrsdSHLNSonKMUGtHcVR4VJPjeNMYBUmpcWCsim9x1FtFZVoUz/bkUOa5KTiTb1U47M6b8TnkprZzKrOyV1D/ZtrYH/q41KNzlLPVdF6VCxaJKYjTpMmO5Nwgc2JWG8oMr28l7IEaylyd8KstmazCMDGo8CfTUlKVN1GN4tQnmfS9uGoyi98m9N4MT/rn/ejb597FZRveOnyET3AEMZzCBXyFAQyBwRM8wv86vwOloMw2Fq0Bp12Zh9eKTj4AzT/tZ4=</latexit> <latexit sha1_base64="qLkqiWiHzvbYZf5ukltPQ9m19Nk=">ACW3icbZBNSxBEIZrx+/xI6viKZcmi6CXZUYC6iEg6iHDWSjsDMuPT212mx/DN09hqWZP+Sv8WoO+S2Z2R1C1LzQ8PJUFVX9ZoXg1kXRSydYWl5ZXVvfCDe3tnc+dHf3flhdGoZDpoU2txm1KLjCoeNO4G1hkMpM4E02vWrqN49oLNfqu5sVmEp6r/iEM+pqNO5eJwPLx14lj8j8tKqOGkPMflCyhaT6V+Kd54vUMJy7cgCV+NuL+pHc5H3Jm5ND1oNxrsdSHLNSonKMUGtHcVR4VJPjeNMYBUmpcWCsim9x1FtFZVoUz/bkUOa5KTiTb1U47M6b8TnkprZzKrOyV1D/ZtrYH/q41KNzlLPVdF6VCxaJKYjTpMmO5Nwgc2JWG8oMr28l7IEaylyd8KstmazCMDGo8CfTUlKVN1GN4tQnmfS9uGoyi98m9N4MT/rn/ejb597FZRveOnyET3AEMZzCBXyFAQyBwRM8wv86vwOloMw2Fq0Bp12Zh9eKTj4AzT/tZ4=</latexit> Bloch Theorem Crystal in real space: Ψ n k ( r ) = u n k ( r ) e i k · r defined on the whole unit cell and periodic Brillouin zone in reciprocal space: over the cells If there is only one band ( n =1): Ψ k ( r ) = u k ( r ) e i k · r And we can define the Wannier functions: Z Ψ k ( r ) e − i k · R d k | R i = BZ – π /a 0 π /a k - One WF per lattice vector R: N in total with Born-von Karman PBC Courtesy of I. Souza / D. Vanderbilt with N total unit cells - They are all identical, only shifted: if we have they are | R 1 i , | R 2 i shifted by R 2 - R 1
From Bloch Orbitals to Wannier Func:ons Multiband case, simplest thing to do: Note : The shape of the WFs (in real space) will be different for every phase!
From Bloch Orbitals to Wannier Func:ons Multiband case, simplest thing to do: More generally:
Orthogonal and unitary transforma:ons Unitary matrix Rotated Bloch function n=2 n=1 – /a 0 /a – π /a 0 π /a k k Courtesy of I. Souza / D. Vanderbilt
Generalized Wannier Func:ons for Composite Bands Each unitary matrix chooses a different set of WFs. We would like to choose the “best”, i.e. the “maximally-localized”
The Localiza:on Func:onal (Foster‐Boys) N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
Decomposi:on of the Localiza:on Func:onal
How to compute? Blount identities Centers of Wannier func:ons: definition Bloch theorem WF center
Blount iden::es Therefore: Numerical approach: numerical derivatives on a uniform k grid in the BZ We can express the relevant quantities as a function of the M mn matrices (these will be one of the main inputs to Wannier90)
To compute the maximal localization, we do not need to know the wavefunctions , but only the overlaps M mn matrices at neighbouring k-points (after minimization, if we want to plot the Wannier functions in real space, we need instead to know the u nk - in the code: files UNK) Numerical approach: numerical derivatives on a uniform k grid in the BZ We can express the relevant quantities as a function of the M mn matrices (these will be one of the main inputs to Wannier90)
Silicon, GaAs, Amorphous Silicon, Benzene M. Fornari, N. Marzari, M. Peressi, and A. Baldereschi, Comp. Mater. Science 20, 337 (2001)
The localisation procedure • Long-range decay : Wannier functions corresponding to isolated valence bands decay to zero exponentially with the distance from their center • At the global minimum (maximally-localized WFs) the Wannier functions are real (the code prints the max. absolute ratio of imaginary and real part to check this) • We might find a local minimum! Care is needed • If we expect (from physical/chemical considerations) the shape and position of Wannier functions, we can give an initial guess in the form of projections on localised orbitals
Real‐Space Projectors
Recommend
More recommend