icecube neutrino messages from grbs
play

IceCube: Neutrino Messages from GRBs Alexander Kappes Univ. - PowerPoint PPT Presentation

IceCube: Neutrino Messages from GRBs Alexander Kappes Univ. Erlangen / Univ. Wisconsin-Madison Deciphering the Ancient Universe with GRBs 19. 23. April 2010, Kyoto (Japan) Outline Neutrino detection & the IceCube observatory


  1. IceCube: Neutrino Messages from GRBs Alexander Kappes Univ. Erlangen / Univ. Wisconsin-Madison Deciphering the Ancient Universe with GRBs 19. – 23. April 2010, Kyoto (Japan)

  2. Outline • Neutrino detection & the IceCube observatory • Current status of GRB searches with IceCube - Prompt neutrinos - Precursor neutrinos - Model independent searches • Future perspectives with IceCube - Observational program - Optical follow-up 2 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  3. Principle of neutrino detection muon cascade nuclear ν μ reaction time & position of hits PMT amplitudes energy µ (~ ν ) trajectory

  4. Background: atmospheric muons and neutrinos cosmic p rays μ ν μ cosmic atmosphere ν μ μ ν μ p • Flux from above dominated by atmospheric muons • Neutrino telescopes mainly sensitive to neutrinos from below 4 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  5. Sky visibility in neutrinos above Horizon below 5 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  6. IceCube at the South Pole South Pole IceCube surface area

  7. The IceCube observatory • IceTop Air shower detector • InIce 86 strings (5160 PMTs) -1450 m Instrumented volume: 1 km 3 Current status: 79 strings deployed -2450 m 7 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  8. Current Status of GRB Searches with IceCube 8 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  9. Neutrinos from GRBs Fireball model EeV neutrinos PeV neutrinos TeV neutrinos Precursor Prompt ~-100 s T 0 ~100 s > 1000 s Smoking gun evidence for hadronic acceleration → sources of UHECR 9 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  10. Detection channels Muons: • Good angular resolution (IceCube <1° for E > 1 TeV) • Rather poor energy resolution (factor ~3) Cascades: • Sensitive to all flavors • Better energy resolution • Reduced directional information 10 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  11. Analysis methods • GCN-satellite triggered searches Off-time On-time (blind) Off-time prompt background T 0 precursor wide window (~100 s) (several hours) very low background → 1 event can be significant ! • Untriggered “rolling window” searches time 1 evt 2 evt 1 evt 11 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  12. Prompt phase: individual GRBs • Individual analysis of bright GRBs worthwhile • Example “naked-eye” GRB: Expected 0.1 events (9 strings) Abassi et al., ApJ 701 (2009) GRB 080319B 90% CL upper limit ν μ Γ = 300 • Expect O (1) event from bright GRBs with 86 strings 12 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  13. Prompt phase: stacked searches • Individual modeling of bursts using satellite data (fireball model á la Guetta et al.) • IceCube 40-strings: 117 GCN bursts (northern hemisphere; mainly Swift + Fermi) preliminary • Sum expected events = 2.8; no signal found 13 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  14. Prompt phase: stacked searches 90% CL upper limits ν μ for 117 bursts AMANDA final (using 416 bursts) Achterberg et al., ApJ 674 (2008) Waxman-Bahcall spectrum IceCube 40-strings (using 117 bursts) preliminary Individual spectra • IceCube starts to constrain fireball model parameters 14 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  15. Precursor phase 90% CL upper limits ν μ • Jets with low Γ still inside progenitor star all SNe have choked jets → TeV neutrinos Rolling window AMANDA, cascades • Possibly large fraction Achterberg et al., ApJ 664 (2007) of “choked” bursts Triggered IceCube, 22-strings → only detectable with Abbasi et al., ApJ 710 (2010) “rolling window” Razzaque et al., PRD 68 (2003) (H progenitors) 15 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  16. SN 2008d: neutrinos from core-collapse supernovae • First direct observation of Distance: 27 Mpc SN shock breakout • X-ray flash yields precise SN time • “Slow-jet” model 90% CL upper limits ν μ (IceCube 22-strings) (Razzaque, Meszaros, Waxman, Ando, Beacom) preliminary • ~ 0.1 evts expected in IceCube 22-strings Ando & Beacom, PRL 95 (2005): - jet points to Earth - Γ b =3, E j =3 × 10 51 • No signal found 16 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  17. Model independent • Model-independent approaches important → choice of time window → energy spectrum • Simple approach: fixed (wide) time window - IceCube 22 strings (41 GRBs): -1 to +3 h around GRB; No signal found Average ν μ upper limit (90% CL) per burst for E -2 flux: → 6.6 × 10 − 5 erg cm − 2 (3 TeV–2.8 PeV) 17 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  18. Model independent Approach for “arbitrary” time scales: • Start with search in small window and 0.015 Weighted Entries / bin increase it consecutively 0.010 • Trial factor important • IceCube 40-strings: No signal found 0.005 Icecube 40 E -2 Muon Neutrino Flux Limits Sensitivity ν μ (90%CL; IceCube 40-strings) Per-Burst Normalization (GeV � cm -2 ) per-burst normalization (GeV cm -2 ) 0.000 12 -40 -20 0 20 40 60 GRB Trigger Time Difference 90% Upper Limit 11 3.0 ! 10 -3 preliminary 90% Sensitivity 10 Muon Neutrino Events 9 2.5 ! 10 -3 8 2.0 ! 10 -3 7 6 1.5 ! 10 -3 5 4 1.0 ! 10 -3 3 2 5.0 ! 10 -4 1 0.0 ! 10 0 0 10 s 100 s 1000 s 10000 s emission window (s) � t (s) 18 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  19. Future Perspectives with IceCube 19 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  20. Observational program Detector sensitivity still increasing significantly during next (analysis) years; operation for at least for 10 years • Triggered searches - Stacked analysis (model dependent + independent) - Individual analyses of exceptional bursts - Satellite “coverage”: • Present: Swift 2010 + 4 years, Fermi 2013 (+ 5 years) • Future: SVOM (planned 2012 – ?), UFFO (planned 2015 – ?), EXIST (2017?) . . . • Rolling-window searches important ! • All-flavor searches (cascades) underway • Optical follow-up 20 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  21. Optical follow-up • IceCube coincidence triggers optical follow-up - angular window 3.5° - time window 100 s SN/GRB Institute in the North Optical telescopes Iridium IceCube • Delay neutrino detection → start of optical observations: < 5 min Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  22. Observational program • Prompt observation (first night): Search for fast decreasing GRB afterglow magnitude - 10 short (5 s obs. time) - 10 medium (20 s obs. time) - 20 long (60 s obs. time) Kahn et al., 2006 1E-4 0.01 1 100 t (days after burst) • Follow-up observations (14 following nights): Slowly rising supernova light-curve - 8 long (60 s obs. time) per night Strizinger et al. (2003) 20 0 40 60 t (days after burst) 22 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  23. ROTSE telescope network • Fully robotic • 24 hour (almost) all sky coverage • Large field of view (1.85˚ × 1.85˚) McDonald, Texas TUG, Turkey H.E.S.S., Namibia SSO, Australia Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  24. Image processing – = „New“ „Reference“ Subtraction • Automatic candidate selection Simulated SN light-curve • Test of algorithms with simulated SN light-curve extracted -mag. (SN light-curve model by P. Nugent (SN1999ex)) McDonald, Texas TUG, Turkey Measured mag. • System successfully running Limiting mag. since end of 2008 • Data analysis underway T+0 T+10 T+20 T+30 time [days] 24 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  25. Summary • With IceCube, the first km 3 -scale neutrino telescope is nearing completion • GRBs highly interesting targets for neutrino telescope • Analyses cover wide range of scenarios; already starting to constrain models • Optical follow-up program extends IceCube’s physics potential significantly 25 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

  26. The IceCube collaboration • Uppsala University • Stockholm University University of Oxford • Universität Mainz • Humboldt Univ., Berlin • DESY, Zeuthen • Universität Dortmund • Universität Wuppertal • Univ Alabama, Tuscaloosa Chiba • MPI Heidelberg • Univ Alaska, Anchorage University • RWTH Aachen • UC Berkeley • Universität Bonn • UC Irvine • Clark-Atlanta University • Universite Libre de Bruxelles • U Delaware / Bartol Research Inst • Vrije Universiteit Brussel • Georgia Tech • Université de Mons-Hainaut • University of Kansas • Universiteit Gent • Lawrence Berkeley National Lab • EPFL, Lausanne • University of Maryland • The Ohio State University Univ. of Canterbury, Christchurch • Pennsylvania State University • University of Wisconsin-Madison • University of Wisconsin-RiverFalls • Southern University, Baton Rouge Alexander Kappes PANIC'08, Eilat 16 Alexander Kappes, GRB’10, Kyoto, 23. April 2010

Recommend


More recommend