http christian j borde free fr
play

http://christian.j.borde.free.fr - PowerPoint PPT Presentation

http://christian.j.borde.free.fr http://christian.j.borde.free.fr/st163023.pdf Comparison of atom and photon Comparison of atom and photon interferometers using 5D optics interferometers using 5D optics Christian J. Bord Acadmie des


  1. http://christian.j.borde.free.fr http://christian.j.borde.free.fr/st163023.pdf

  2. Comparison of atom and photon Comparison of atom and photon interferometers using 5D optics interferometers using 5D optics Christian J. Bordé Académie des Sciences FLORENCE 2009

  3. Laser beams b a Atoms space c τ π /2 Pulses time Total phase=Action integral+End splitting+Beam splitters

  4. Laser beams Atoms π π /2 π /2 BORDÉ-CHU INTERFEROMETER Total phase=Action integral+End splitting+Beam splitters

  5. BORDÉ-RAMSEY INTERFEROMETERS a a a b b b a a a a a a b b b b b b b b b a a a

  6. Multiple wave interferometer Altitude a g b b a a a b b b b a a a a b b b a a b Time

  7. ∂ 2 1 g μν ≡ ∇ ∇ � ≡ − Δ � μ ν ∂ 2 2 c t 2 2 M c μ = → ϕ + ϕ = 2 2 0 p p M c μ 2 �

  8. FROM 3 TO 4 SPATIAL DIMENSIONS ⎡ ⎤ 2 ( ) Mc ( ) ( ) ϕ τ = τ − τ ϕ , exp , ⎢ ⎥ x c i x Mc 0 � ⎣ ⎦ ( ) ∂ ϕ τ , x c ( ) 2 = − ϕ τ � , i Mc x ∂ τ ∂ ϕ 2 2 2 1 M c − Δ ϕ + ϕ = 0 ∂ 2 2 2 � c t ∂ ϕ ∂ ϕ 2 2 1 1 ∂ ϕ ∂ ϕ 2 2 1 1 − Δ ϕ − = 0 ϕ ≡ − Δ ϕ − = ˆ � 0 ∂ ∂ τ 2 2 2 2 ∂ ∂ τ 2 2 2 2 c t c c t c ⎡ ⎤ 2 = ∫ ( ) ( ) d Mc Mc ( ) ( ) ϕ τ τ − τ ϕ , exp , ⎢ ⎥ x c i x Mc 0 π � � 2 ⎣ ⎦

  9. b E(p) a c 2 M b c 2 M a p //

  10. Mc p E

  11. d σ = − − = 2 2 2 2 2 t 0 c dt dx ds S =c τ = − = 2 2 2 2 0 ds c dt dx x

  12. OPTICAL PATH & FERMAT’S PRINCIPLE IN (4+1)D ∂ ϕ 2 1 ϕ ≡ ϕ − = ˆ � � 0 ∂ τ 2 2 c μ ν = ˆ ˆ eikonal equation in 5D ( , 0,1,2,3,4): g μν ∂ φ ∂ φ = ˆ ˆ 0 μ ν ˆ ˆ ⎛ ⎞ (4) g E dl ( ) ∫ ∫ 0 φ = − − − + ⎜ ⎟ j j t t dx ⎜ ⎟ 0 h cg c g ⎝ ⎠ 00 00 h ( 4 ) = − + 2 τ 2 ( ) i j dl f dx dx c d 4 λ = ij c g 00 g g E 0 0 = − i j f g ij ij g 00

  13. BASICS OF ATOM /PHOTON OPTICS Parabolic approximation of slowly varying phase and amplitude E(p) 4 = * 2 E M c 3 0 2 E 0 2 1 p 1 2 p 3 4 0

  14. BASICS OF ATOM /PHOTON OPTICS Schroedinger-like equation for the atom /photon field: ∂ ϕ * 2 1 1 M c ⎡ ⎤ = ϕ − + ϕ + μν ϕ 4 � j i p p p p p h p ⎣ ⎦ μ ν 4 ∂ * * j 2 2 2 t M M = ∂ = ∂ = ω * � � � ; ; ( / for photons) p i p i p M c c τ 4 0 j j c � � � � ⇒ = − − γ 00 2 2 - gravitation field: 2 . / . . / h g q c q q c � � ⇒ = − α - rotation field: . / h q c ⇒ ⇒ ⇒ = β − δ - gravitational wave: h � � � � � � � � � � ⇒ ⇒ ⇒ = α + β − γ − + * * * . ( ). . ( ). /2 . ( ). /2 . . H p t q p t p M M q t q M g q f p ext

  15. ABCD ξφ LAW OF ATOM/PHOTON OPTICS = ( , ) wavepacket q t = ( , ) wavepacket q t ( ) ( ) ⎡ − ⎤ − exp ( ) ( ) / � ( ), ( ), ( ) ( ) ip t ( q q t ) F q ( q t X t Y t ) ⎣ ⎦ ⎡ − ⎤ − exp / � exp ( ) ( ) / � ( ), ( ), ( ) c c c iS ip t q q t F q q t X t Y t ⎣ ⎦ cl c c c = = x y z c τ ( , , , ); ( , , , ) p p p p Mc q x y z = + + ξ ( ) ( ) ( ) / ( , ) * q t Aq t Bp t M t t 0 0 0 c c c = + + φ ( ) / ( ) ( ) / ( , ) * * p t M Cq t Dp t M t t 0 0 0 c c c = + ( ) ( ) ( ) X t AX t BY t 0 0 = + ( ) ( ) ( ) Y t CX t DY t 0 0

  16. Ehrenfest theorem + Hamilton equations � � � � � � � � � � ⇒ ⇒ ⇒ = α + β − γ − + * * * . ( ). . ( ). /2 . ( ). /2 . . H p t q p t p M M q t q M g q f p ext ( ) ( ) ⎛ ⎞ ⎡ α β ⎤ , , ⎛ ⎞ ( ') ( ') A t t B t t t t ∫ t 0 0 = exp ' ⎜ ⎟ T ⎢ ⎥ ⎜ ⎟ dt ( ) ( ) γ α , , ( ') ( ') ⎝ ⎠ ⎝ C t t D t t ⎠ ⎣ t t ⎦ t 0 0 0

  17. GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM/PHOTON INTERFEROMETER N ∑ � δϕ = δ + δϕ (5) (5) ( . ) k q j j j = 1 j ⎡ ⎤ ω ω (0) [ ] � = = τ (5) (5) � ( , , , ), ; ( , , , ), ⎢ ⎥ k k k k q x y z c ct x y z ⎣ ⎦ c c ( ) � � � (5) (5) δ = − = + (5) (5) (5) (5) ; / 2 k k k q q q β α β α j j j j j

  18. Atomic Gravimeter z 2 ' v 2 ' τ arm II 4 z z 1 ' v 1 ' z 2 v 2 e t − a ⎛ ⎞ ' z z ( ) ( ) n τ + τ − τ − τ + + + = 2 v � v ' 2 2 0 ⎜ ⎟ Mc M k M i d 1 3 2 4 2 2 ⎝ 2 ⎠ r o o τ c ∫ τ = 2 0 j dx e p 3 c a j p S = − γ + + γ = ( )( − / ) γ + ( ) v / ( )( / ) ( )v z A T z g B T g v 0 ' z 1 v 1 z A T z g B T 1 0 0 1 0 0 τ = − γ + + � v ( )( / ) ( )v / C T z g D T k M arm I 1 1 0 0 T T' v 0 z 0 Time coordinate t δϕ = − − − + + − ( ' ) ( ' ) / 2 k z z z z k z z 2 1 1 0 2 2

  19. Exact phase shift for the atom gravimeter δϕ = − − − + + − ( ' ) ( ' ) / 2 k z z z z k z z 2 1 1 0 2 2 ⎧ ( ) ( ) ⎛ � ⎞ k k ( ) ⎡ ⎤ = γ + − γ + sinh ' 2sinh v ⎨ ⎜ ⎟ T T T ⎣ ⎦⎝ 0 γ 2 ⎠ ⎩ M ⎫ ⎛ ⎞ ( ) ( ) g ( ) ⎡ ⎤ + γ + γ + − γ − 1 cosh ' 2cosh ⎬ ⎜ ⎟ T T T z ⎣ ⎦⎝ 0 γ ⎠⎭ in γ, with T=T’ : which can be written to first-order ⎡ ⎤ ⎛ ⎞ 7 � k δϕ = + γ − + − 2 2 2 v ⎜ ⎟ kgT k T ⎢ gT T z ⎥ 0 0 12 ⎝ 2 ⎠ ⎣ ⎦ M Reference: Ch. J. B., Theoretical tools for atom optics and interferometry, C.R. Acad. Sci. Paris, 2, Série IV, p. 509-530, 2001

  20. ARBITRARY 3D TIME-DEPENDENT GRAVITO-INERTIAL FIELDS � � � � � � ⇒ ⇒ ⇒ = α + β − γ * * Hamiltonian: . ( ). . ( ). / 2 . ( ). / 2 H p t q p t p M M q t q α β ⎛ ⎞ ⎛ ⎞ A B ∫ = Hamilton's equns: exp ⎜ ⎟ T ⎜ ⎟ dt γ α ⎝ ⎠ ⎝ ⎠ C D Example: Phase shift induced by a gravitational wave ⇒ ⇒ ⇒ ⇒ ⇒ { } ( ) β = + ξ + φ γ = = Einstein coord.: 1 cos , 0, with ij h t h h ⇒ ⇒ ⇒ ⇒ ( ) ( ) β = γ = ξ ξ + φ 2 Fermi coord.: 1, / 2 cos h t = ⎧ 1 A ⎪ Einstein coord.: ⎨ h ( ) = + ⎡ ξ + φ − φ ⎤ sin sin B t t ⎣ ⎦ ⎪ ξ ⎩ ξ ⎧ h h t ( ) = − ⎡ ξ + φ − φ ⎤ − φ 1 cos cos sin A ⎣ t ⎦ ⎪ ⎪ 2 2 Fermi coord.: ⎨ h ht ( ) ( ) ⎪ = + ⎡ ξ + φ − φ ⎤ − ⎡ ξ + φ + φ ⎤ sin sin cos cos B t t t ⎣ ⎦ ⎣ ⎦ ⎪ ξ 2 ⎩

  21. Atomic phase shift induced by a gravitational wave ( ) ( ) δϕ = − ξ ξ + φ ξ 2 2 sin sinc / 2 khV T T T 0 ( ) ( ) − ⎡ ξ + φ − ξ + φ + φ ⎤ / 2 cos 2 2cos cos khq ⎣ T T ⎦ 0 ( ) ( ) − ⎡ ξ + φ − ξ + φ ⎤ + ϕ − ϕ + ϕ cos 2 cos 2 khV T T T ⎣ ⎦ 0 0 1 2 ⎛ ⎞ � k = + / ⎜ ⎟ V p M 0 0 ⎝ 2 ⎠ Ch.J. Bordé, Gen. Rel. Grav. 36 (March 2004) Ch.J. Bordé, J. Sharma, Ph. Tourrenc and Th. Damour, Theoretical approaches to laser spectroscopy in the presence of gravitational fields, J. Physique Lettres 44 (1983) L983-990

  22. Bordé-Ramsey interferometers Laser beams Atom beam 2 * 2 ⎛ ⎞ � M c k ( ) ( ) δϕ = − ξ + φ ξ cos sinc ⎜ ⎟ T h T T * � ⎝ ⎠ M c

Recommend


More recommend