hpc simula ons of cardiac electrophysiology using pa ent
play

HPC simula+ons of cardiac electrophysiology using pa+ent-specific - PowerPoint PPT Presentation

HPC simula+ons of cardiac electrophysiology using pa+ent-specific models of the human heart CompBioMed & VPH Ins2tute webinar Francesc Levrero-Florencio & Ana Minchol Computa(onal Cardiovascular Science Group Department of Computer


  1. HPC simula+ons of cardiac electrophysiology using pa+ent-specific models of the human heart CompBioMed & VPH Ins2tute webinar Francesc Levrero-Florencio & Ana Mincholé Computa(onal Cardiovascular Science Group Department of Computer Science, University of Oxford

  2. Contents • Introduc-on to the heart (electro)physiology • Mathema-cal modelling • CHASTE • Alya • Final Comments

  3. Brief introduc-on to (electro)physiology

  4. Introduc-on to the physiology of the heart • Heart is a contrac-ng muscle • 4 chambers • 2 systems: pulmonary and systemic {https://commons.wikimedia.org}

  5. Electrophysiology of the heart • SA node – Atria - AV node - brief delay - His bundle branches down the septum • Purkinje fibers allow propaga-on throughout the endocardium • Cell to cell propaga-on through gap junc-ons. Zacur et al, BIVPCS 2017 {http://www.bem.fi/book/06/06.htm}

  6. Cell electrophysiology • Four phases of the ac-on poten-al: ü Upstroke (0/1) ü Plateau (2) ü Repolarisa-on (3) ü Res-ng poten-al (4) • Calcium and Sodium currents are involved during the upstroke and plateau phases • Potassium-based currents are involved in the repolarisa-on {Ravens U and Cerbai E. Europace 2008}

  7. Tissue electrophysiology {Essen-als of Human Physiology 2010}

  8. Cardiac modelling AP cell model 60 30 V (mV) 0 -30 -60 -90 0 150 300 450 time (ms) Ionic currents

  9. Mathema-cal modelling

  10. First cardiac AP model Denis Noble (1936-present)

  11. … to current human AP models „ Based on experimental data from >1 >150 huma man hearts. „ S-ll largely based on Hodgkin-Huxley model and its formula-on of voltage- gated ion channel behaviour. {O’Hara et al. PLOS Comput Biol. 2011} Sodium channel schema-c Sodium channel equa-on

  12. Monodomain and bidomain models {Adebisi et al. J Biomed Sci Eng. 2013}

  13. Integra-ve physiology through modelling Integra-ve physiology through modelling Cellular Tissue Proper-es Membrane Electrical Electrophysiology Kine-cs S-mula-on ​𝐷↓𝑛 ​𝜖​𝑊↓𝑛 /𝜖𝑢 = ​ 1 /​𝑇↓𝑤 𝛼 ∙ 𝜏𝛼​𝑊↓𝑛 − ​𝐽↓𝑗𝑝𝑜 + ​𝐽↓𝑡𝑢𝑗𝑛 Propaga-on of the electrical impulse Adapted from Dr Vincent Jacquemet (Univ. Montreal, Canada)

  14. Integra-ve physiology through modelling Considered simula-on soeware ü 0D,1D, 2D and 3D ü 0D,1D, 2D and 3D ü In-house and Metis ü Petsc and Metis ü Modern Fortran ü C++ ü FE ü FE, BE, RK, CVODE ü Multiphysics ü Multi-scale simulation ü Highly scalable (up to ü Highly scalable 100k cores)

  15. Example of electrophysiology with Chaste

  16. Integra-ve physiology through modelling Chaste • Cardiac Chaste functionalities: ü Monodomain and bidomain models ü Automatic implementation of cellular action potential models from the CellML repository ü Automatic generation of mathematical model for fibre orientation ü Checkpoint of simulations midway through run and restart with altered parameters ü Post-processing of simulation results to calculate electrophysiological properties such as action potential duration, conduction velocity, etc. http://www.cs.ox.ac.uk/chaste/cardiac_index.html

  17. 2D electrical propaga-on using Chaste Integra-ve physiology through modelling • 2D Mesh geometry Courtesy of Dr. Rina Ariga Courtesy of Dr. Ernesto Zacur • Control 2D Electrical propagation Stimulation site • 2D tissue from MRI • O’Hara Rudy 2011 epicardial model • Bidomain model • Isotropic conductivities • Regular stimulus of 600 ms

  18. ü Similar APD values in all the geometry ü Activation time map starting from the septum ü Similar maximum upstroke velocities

  19. Chaste example Integra-ve physiology through modelling Chaste example 2 • 2D propagation with ischemia Ischemia in the anterior heart region: • Hyperkalaemia: [K]o = 8.5 mM • Hypoxia: fkatp = 0.04 • Acidosis: ↓ 25% g Na and g CaL 50 Control Ischemia Voltage [mV] 0 -50 -100 0 100 200 300 Time [ms] {Dutta et al, PBMB 2017}

  20. ü Shorter APD values in the ischemic region ü Activation time map starting from the septum ü Maximum upstroke velocities slower in the ischemic region

  21. Chaste example Integra-ve physiology through modelling Chaste example 3 • 2D geometry with ischemia and ectopy Adding the effect of an ectopic beat in the border zone region

  22. Integra-ve physiology through modelling 3D simula-ons in Chaste • Inclusion of border zones: endocardial and around the ischemic area • Transmural heterogeneities Dutta and Minchole et al, PBMB 2016

  23. Chaste example Integra-ve physiology through modelling 3D simula-ons in Chaste Simulated effect of IKr block in acute ischaemia ! 1831 ms Dutta and Minchole et al, PBMB 2016

  24. Personalization of anatomical models Meshes Parametrization MRI ELECTRO- LOCALIZERS PHYSIOLOGY CINE ECG Zacur, Minchole et al, BIVPCS 2017

  25. Subject DTI003

  26. Computer Simulations to explain Computer simulations to explain cardiac phenotypes Cardiac phenotypes Linking structure and function HPC cardiac simulation 12-lead ECG

  27. Example of electrophysiology with Alya

  28. Integra-ve physiology through modelling Alya • Alya functionalities: ü Monodomain and bidomain models ü A few cellular action potential models are implemented (FHN, ORd, TT) ü Bidirectional electro-mechanical coupling is already implemented and fully functional ü Excitation-contraction coupling models and models of stretch-activated ion channels are implemented ü High efficiency and very high scalability ü Other physics are also available (combustion, incompressible and compressible CFD … ) To obtain Alya, contact: ma mariano.vazquez@bsc.es

  29. Alya example 1 Integra-ve physiology through modelling • Biventricular model (5.2M nodes and 32M elements) • Run on MareNostrum IV (BSC) on 2,000 cores in 15 min • This example comprises of 4 input files in ASCII format: .dat, .dom.dat, .ker.dat and .exm.dat • Electrical propagation only

  30. Integra-ve physiology through modelling Electro-mechanical modelling

  31. Integra-ve physiology through modelling Alya example 2 ü Small blob of tissue ü Run locally with 4 cores ü Electromechanical simulation, Hunter(left) vs Land(right)

  32. Integra-ve physiology through modelling Alya .dat and .dom.dat {hhp://bsccase02.bsc.es/alya/}

  33. Integra-ve physiology through modelling Alya .ker.dat and .exm.dat {hhp://bsccase02.bsc.es/alya/}

  34. Final comments „ Comp mplex nature of biology: • Models as tools to augment experimental/clinical findings. „ HPC HPC is needed for whole biventricular and torso simula-ons: • Models can several tens of millions of elements! „ Highlight of the poten-al of mathema-cal modelling for in silic in silico clinical a cl and d drug t trials: • Subs-tu-on of current protocols for human in silico protocols „ Highlight of the poten-al of mathema-cal modelling for explaining the underlying me mechanisms ms of abnorma mali-es in the ECG: • Poten-al improvement of the associated inverse problem

  35. Acknowledgements Integra-ve physiology through modelling Comp mputa-onal Cardiovascular Science Group, Oxford Ernesto Zacur, Héctor Marmnez, Aurore Lyon, Alfonso Bueno, Patricia Benito, Oliver Brihon, Kevin Burrage, Peter Marinov, Adam McCarthy, Polina Mamoshina, Cris-an Trovato, Jakub Tomek, Francesca Margara, Julia Camps, Louie Cardone-Nooh, Vicente Grau, Elisa Passini, Xin Zhou, Blanca Rodriguez Barcelona Supercomp mpu-ng Cen Center er, , Spain Spain Jazmin Aguado-Sierra, Alfonso San-ago, Marina Lopez, Mariano Vazquez Cardiovascu Ca cular M Med edici cine, e, O Oxf xfor ord Rina Ariga, Hugh Watkins Food and Drug Admi ministra-on, USA Sara Duha, David Strauss Simu mula, , Norway y Valen-na Carapella

  36. Th Thank Y You ou!

Recommend


More recommend