how robust are stratospheric h 2 o and aoa trends derived
play

How robust are stratospheric H 2 O and AoA trends derived from - PowerPoint PPT Presentation

How robust are stratospheric H 2 O and AoA trends derived from different re-analysis products? Paul Konopka, Felix Ploeger, Bernard Legras, Mengchu Tao, Liuba Poshyvailo, Xiaolu Yan, Jonathon Wright, Rolf M uller and Martin Riese


  1. How robust are stratospheric H 2 O and AoA trends derived from different re-analysis products? Paul Konopka, Felix Ploeger, Bernard Legras, Mengchu Tao, Liuba Poshyvailo, Xiaolu Yan, Jonathon Wright, Rolf M¨ uller and Martin Riese Forschungszentrum J¨ ulich, Germany, Institute for Energy and Climate Research - Stratosphere (IEK-7) P .Konopka@fz-juelich.de http://www2.fz-juelich.de/icg/icg-i/www export/p.konopka .

  2. Outline CLaMS - Lagrangian Chemistry Transport Model (Lagrangian mixing, diabatic heating rates) ERA-Interim versus JRA-55 (1979-2013) Stratospheric water vapor Mean age of air (AoA) and the Brewer-Dobson circulation Conclusions

  3. CLaMS - Lagrangian Chemistry Transport Model with ≈ 10 6 air parcels air parcel = “pivotal point with mixing ratios µ i , of m species with i = 1 , ..., m ” Atmosphere below 0.1 hPa is resolved, 100km/400 m – hor./vert. resolution Horizontal meteor. winds (ERA-Interim, JRA55, NCEP) Vertical velocity: diabatic heating rates from radiation, latent heat rather than from ˙ p �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� Trajectory �� �� �� �� �� �� �� �� �� �� �� �� Chemistry �� �� �� �� �� �� �� �� Sedimentation Mixing �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 3-D forward trajectories �� �� �� �� �� �� �� �� �� �� and Lagrangian mixing �� �� �� �� simplified chemistry and dehydration scheme McKenna et al., JGR, 2002, Konopka et al., JGR, 2004, Grooß et al., 2005, ACP , Konopka et al., 2007, ACP , Ploeger et al., 2010, 2013 JGR, Pommrich et al., 2014, GMD Greenland from space shuttle (NASA)

  4. species lower boundary upper boundary ( ∼ 50 km) CH 4 CMDL/AIRS HALOE - HALOE - Climatology: Mean Age linear source MIPAS (SF6) Grooss and Russell, ACP , 2005 - CMDL: GLOBALVIEW, 2015 CO 2 CMDL Mean Age CO 2 /CH 4 /CO since 1979/84/91 CO MOPITT/AIRS Mainz-2D P . Tans, K. Masarie, P . Novelli - CMDL: CATS (5 stations) O 3 0 HALOE, θ ≥ 500 K N 2 O, F11, F12 - J. Elkins O 3 (tracer) 0 HALOE, θ ≥ 500 K - MIPAS, SF6-Age Stiller et al., ACP , 2008 HCl 0 HALOE, θ ≥ 500 K - MOPITT (V3, V4)/AIRS H 2 O ECMWF , ζ ≤ 250 K HALOE Pommrich at al., GMD, 2014 - HCN N 2 O, F11,F12 CMDL 0 Pommrich at al., GRL, 2010 HCN MODIS 0 Simplified chemistry CH 4 ⇒ (OH, O( 1 D), Cl) ⇒ H 2 O, CO ⇒ (OH) ⇒ CO 2 (h ν ) ⇒ O 3 ⇒ (HO x ) ⇒ , N 2 O, F11, F12 ⇒ (O( 1 D), h ν ) ⇒ HCN ⇒ (OH, O( 3 D), uptake by the ocean) ⇒ Multi-annual CLaMS simulations (1979-today)

  5. Lagrangian mixing and transport barriers Hoppe et al, GMD, 2014 Southern Hemisphere winter: Antarctic vortex edge as N 2 O gradient (in pppbv/m) at θ = 450 K. Eulerian (EMAC-FFSL, Lin and Rood, 1996) ver- sus Lagrangian transport (CLaMS) versus MLS climatology at θ = 450 K in September. ⇒ more realistic transport barrier in CLaMS

  6. ...diabatic thinking

  7. diabatic rather than kinematic vert. velocities potential temperature θ defines the vertical coordinate Cross isentropic velocity ˙ θ derived from the ERA-Interim forecast total diabatic heating (long- and shortwave radiation with clouds + latent heat +,..., see Ploeger et al., 2010) + annually averaged mass conservation (Rosenlof et al., JGR, 1995) ⇒ σ - θ , hybride ζ -coordinate (Mahowald et al., JGR, 2002)

  8. diabatic rather than kinematic vert. velocities potential temperature θ defines the vertical coordinate Cross isentropic velocity ˙ θ derived from the ERA-Interim forecast total diabatic heating (long- and shortwave radiation with clouds + latent heat +,..., see Ploeger et al., 2010) + annually averaged mass conservation (Rosenlof et al., JGR, 1995) ⇒ σ - θ , hybride ζ -coordinate (Mahowald et al., JGR, 2002) θ [K] =p/p σ p [hPa] Subtropical Jet s 380 above 300 hPa ζ = θ (pot. Temp.) 100 dζ dt = dθ dt 0.12 360 200 340 0.25 310 300 0.40 280 500 0.80 1.00 1013 [deg N] 10 30 50 70

  9. diabatic rather than kinematic vert. velocities potential temperature θ defines the vertical coordinate Cross isentropic velocity ˙ θ derived from the ERA-Interim forecast total diabatic heating (long- and shortwave radiation with clouds + latent heat +,..., see Ploeger et al., 2010) + annually averaged mass conservation (Rosenlof et al., JGR, 1995) ⇒ σ - θ , hybride ζ -coordinate (Mahowald et al., JGR, 2002) θ [K] =p/p σ p [hPa] Subtropical Jet s 380 above 300 hPa ζ = θ (pot. Temp.) 100 dζ dt = dθ dt 0.12 360 200 340 0.25 310 300 0.40 280 below 300 hPa 500 ζ ∼ σ = p/p s , dζ dt = ˙ σ 0.80 p s - surf. pressure 1.00 1013 [deg N] 10 30 50 70

  10. Diabatic versus kinematic 420 410 400 θ [K] Trajectory-based reconstruction of O 3 diabatic significantly better than kinematic but why ? (from Ploeger et al., ACP , 2011) 390 HALOE FOZAN ERA−Int. assim 380 kinematic diabatic 370 200. 400. 600. 0.0 O 3 [ppbv]

  11. Diabatic versus kinematic isen_model/KIN 420 410 400 ZETA [K] 390 diabatic 380 isen_model/DIA 420 370 era_interim 410 360 −50 0 50 Latitude, deg N 400 kinematic ZETA [K] 390 380 ...because diabatic approach is less dispersive, mainly due to assimilation 370 errors in the ˙ σ ≈ dp/dt fields ! era_interim 360 (Eluszkiewicz et al, 2000, Schoeberl −50 0 50 et al., 2003, 2005, Diallo et al., 2012) Latitude, deg N

  12. H 2 O-taperecorder H 2 O (ppmv) MLS (HALOE) MLS (HALOE) 600 600 6.0 3 0 5.5 Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 5.0 40 500 500 4.5 50 4.0 MLS climatology, 2005 -12 450 450 3.5 white line - HALOE 70 3.0 400 400 2.5 1 0 0 350 350 2.0 J J F F M M A A M M J J J J A A S S O O N N D D Month Month

  13. H 2 O-taperecorder ERA−Interim ERA−Interim ERA-Interim climatology, ± 15 N, 2002-12 600 600 3 0 (-) sligthly too dry during winter/spiring Potential Temperature, θ , [K] Potential Temperature, θ , [K] (-) slightly too wet during summer 550 550 (Fueglistaler et al., JGR, 2013) 40 500 500 (-) ...but much too fast tropical upwelling ! 50 (Dee et al, QJRMS, 2011) 450 450 70 400 400 H 2 O (ppmv) MLS (HALOE) MLS (HALOE) 600 600 1 0 0 6.0 3 0 350 350 J J F F M M A A M M J J J J A A S S O O N N D D 5.5 Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 Month Month 5.0 40 500 500 4.5 50 4.0 MLS climatology, 2005 -12 450 450 3.5 white line - HALOE 70 3.0 400 400 2.5 1 0 0 350 350 2.0 J J F F M M A A M M J J J J A A S S O O N N D D Month Month

  14. ...and from CLaMS (diabatic transport) CLaMS 2002−12 CLaMS 2002−12 600 600 CLaMS climatology, ± 15 N, 2002-12 3 0 ...tropical upwelling is much better represented Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 (diabatic heating rates from ERA-Interim) 40 500 500 50 450 450 70 400 400 H 2 O (ppmv) MLS (HALOE) MLS (HALOE) 600 600 1 0 0 6.0 3 0 350 350 J J F F M M A A M M J J J J A A S S O O N N D D 5.5 Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 Month Month 5.0 40 500 500 4.5 50 4.0 MLS climatology, 2005 -12 450 450 3.5 white line - HALOE 70 3.0 400 400 2.5 1 0 0 350 350 2.0 J J F F M M A A M M J J J J A A S S O O N N D D Month Month

  15. How robust are CLaMS simulations with respect to the used re -analysis ? (diabatic heating rates)

  16. Zonal mean diabatic heating (2001 -10) from different reanalisis products: top - total, middle - radiation, bottom - residuum (laten heat + ..), Wright and Fueglistaler, ACP , 2013

  17. Zonal mean diabatic heating (2001 -10) from different reanalisis products: top - total, middle Zonal mean diabatic heating (2001-10) from different reanalisis products: top - total, middle - radiation, bottom - residuum (laten heat + ..), Wright and Fueglistaler, ACP - radiation, bottom - residuum (laten heat + ..), Wright and Fueglistaler, ACP , 2013 , 2013

  18. H 2 O/AoA from CLaMS driven by: ERA -Interim (Dee et al, 2011) JRA-55 (Kobayashi et al, 2015)

  19. Linear trends (35 years) adapted from Tao et al., 2015, with added JRA -related analysis CLaMS_ERA HALOE MW during eQBO CLaMS_JRA MLS MW during wQBO 1.0 1.0 H2O [ppmv] H2O [ppmv] 0.5 0.5 0.0 0.0 −0.5 −0.5 −1.0 −1.0 4 4 2 2 Age [month] Age [month] 0 0 −2 −2 −4 −4 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 TIME [year] Evolution of H 2 O (top) and of the mean age of air AoA (bottom) in the tropics ( ± 10 N) at θ = 400 K ( 18km) shown as the deseasonalized anomaly with respect to the 35 year climatology (15 days running mean).

Recommend


More recommend