how efficient is an approach of geoengineering to
play

How efficient is an approach of geoengineering to mitigate the - PowerPoint PPT Presentation

How efficient is an approach of geoengineering to mitigate the global warming? I.I. Mokhov, A.V. Eliseev, and A.V. Chernokulsky A.M. Obukhov Institute of Atmospheric Physics RAS ENVIROMIS-2008 Motivation - 1 - Globally, climate has warmed in


  1. How efficient is an approach of geoengineering to mitigate the global warming? I.I. Mokhov, A.V. Eliseev, and A.V. Chernokulsky A.M. Obukhov Institute of Atmospheric Physics RAS ENVIROMIS-2008

  2. Motivation - 1 - Globally, climate has warmed in the 20th century by 0.6 K (0.4-0.8 K). - Such warming on a century timescale was not observed for any previous epoch and most likely to be attributed to human activities [IPCC, 2007]. This warming is expected to proceed for the whole 21st century and beyond. adopted from [IPCC, 2007]

  3. Motivation - 2 It was suggested [Budyko, 1974] to mitigate global warming by injection of sulphur in the stratosphere. Recently, this approach is considered as a form of geoengineering [Schneider 1996; Schneider 2001; Izrael, 2005; Crutzen, 2006; Wigley, 2006]. Natural examples: cooling after volcanic eruptions; less direct: cooling due tropospheric sulphates Benefits: low cost due to large residence time of aerosols in stratosphere (~2-3 yr) Possible disadvantages: strong decrease of precipitation [Trenberth and Dai, 2007] possible enhancement of the stratospheric ozone depletion [Tilmes et al., 2008] Emissions required to compensate the atmopsheric CO 2 doubling: [Izrael, 2005]: 0.6 TgS/ yr [Crutzen, 2006]: 1-2 TgS/ yr [Wigley, 2006]: 5 TgS/ yr

  4. IAP RAS CM Resolution : 4.5 o *6 o , L8 - atmosphere, L4 - ocean, L1 - land; ∆ t = 5 days Atmosphere : 3D quasigeostrophic large- scale dynamics. Synoptic- scale dynamics is parametrised based on their representation as Gaussian ensembles. In any atmospheric layer, temperature depends linearly on height. Fully interactive hydrological cycle. Partly interactive methane cycle. Ocean : Prognostic equation for sea surface temperature. Geostrophic large- scale dynamics. Universal vertical profiles in any oceanic layer. Oceanic salinity is prescribed. Interactive, globally averaged oceanic carbon cycle. Sea ice : Diagnostic, based on the local SST Vegetation : Spatial distribution of ecozones is prescribed. Fully interactive globally averaged terrestrial carbon cycle. Interactive CH 4 emissions from natural wetlands. Turnaround time: ~ 17 sec per model year (Intel Zeon)

  5. Top-of-the atmosphere stratospheric aerosol radiative forcing F strat = - a strat τ strat , a strat = 22 W/ m 2 [Hansen et al, 2005], optical depth τ strat = k ext,strat M strat M strat is stratospheric aerosol mass per unit area, extinction coefficient k ext,strat = 7.6 m 2 / g (derived from the Mt. Pinatubo A.D. 1991 eruption observations)

  6. Annual mean surface air temperature [K] response to volcanic forcing [Amman et al., 2003] (1891-2000) o b n u A.D. 1992 o t a g h n c n (aftermath for i i P u h C g . t Mt.Pinatubo eruption) A M l E IAP RAS CM ∆ T g , K obs., ENSO removed [Wigley, 2000]

  7. Ensemble numerical experiments with a climate mitigation via stratospheric aerosol loading - duration: 1860-2100 - historical+SRES A1B anthropogenic CO 2 and CH 4 emissions - historical+SRES A1B atmospheric concentrations of N 2 O (BernCC) and tropospheric sulphates (MOZART 2.0) + mitigation via controlled sulphur emissions in the stratosphere with values of governing parameters varying between different ensemble members The total number of ensemble members: 2331 Cumulative length: 564 102 yr

  8. Parameters of st ratospheric aerosols Global burden: d M strat,g / d t = E - M strat,g / τ res { Emissions: 0, before A.D. 2012 E = E 0 , from A.D. 2015 to t 0 0, after t 0 Local burden: Earth ) * Y( φ ) M strat = ( M strat,g / S Depending on the ensemble member Y E 0 = from 0.6 to 4 TgS/ yr t 0 = A.D. 2100 or A.D. 2075 k ext, strat = 5-20 m 2 / g residence time τ res = 1-4 yr latitudinal profile Y( φ ) is varied between uniform, triangular, and trapezoidal functions of x = sin φ with varying either x 0 or x 1 (see Figure). x NP x 0 x 1 EQ -x 1 SP

  9. Change in global surface air temperature ensemble members with τ res =2 yr, k ext,strat =7.6 m 2 /g, whole ensemble and uniform Y( φ ) ∆ T g , K ∆ T g , K no mitigation E 0 = 3 TgS/ yr E 0 = 0.6 TgS/ yr E 0 = 4 TgS/ yr E 0 = 1 TgS/ yr obs. (CRU UEA) E 0 = 2 TgS/ yr

  10. Mitigat ion eff iciency of diff erent latitudina l profiles for stratospheric aerosol Y(sin φ ) τ strat,* = E 0 τ res k ext,strat / S Earth ∆ T mitigation,g - ∆ T anthrop,g in year 2100, K E 0 - emissions of stratospheric aerosols τ res - residence time k ext,strat - extinction coefficient S Earth - area of the Earth's surface uniform triangular with φ 0 =70 o N trapezoidal with φ 1 =50 o N triangular with φ 0 =30 o N τ strat,* trapezoidal with φ 1 =30 o N

  11. Spat ial pattern of mit igation eff iciency for 2050-2060: -( ∆ T m itigation - ∆ T anthrop )/ ( ∆ T mitigation,g - ∆ T anthrop,g ) T m itigation - ensemble members with climate mitigation T anthrop - ensemble member without mitigation uniform Y(sin φ ) triangular Y(sin φ ) with φ 0 =70 o N

  12. Global precipitation change ensemble members with τ res =2 yr, k ext,strat =7.6 m 2 /g, whole ensemble and uniform Y( φ ) ∆ P ∆ P g , % g , % E 0 = 2 TgS/ yr no mitigation E 0 = 3 TgS/ yr E 0 = 0.6 TgS/ yr E 0 = 4 TgS/ yr E 0 = 1 TgS/ yr

  13. Pattern of relative precipitat ion response to mitigation for 2050-2060: 100*( ∆ P m itigation - ∆ P anthrop )/ P 0 P mitigation - ensemble members with climate mitigation P anthrop - ensemble member without mitigation P 0 - present-day annual precipitation uniform Y(sin φ ) triangular Y(sin φ ) with φ 0 =70 o N

  14. Change in global surface air temperature in experiments with a mitigation emission stop in 2075 ∆ T g , K dT g /dt, K/yr no mitigation E 0 = 2 TgS/ yr obs. (CRU UEA)

  15. SAT change rate [K/ decade] for 2076-2085 after the mit igation stop in 2075 (E 0 = 2 TgS/ yr) without mitigation triangular Y(sin φ ) with φ 0 =70 o N, triangular Y(sin φ ) with φ 0 =70 o N, τ res =4, k ext,strat =20 m 2 / g τ res =2.5, k ext,strat =7.6 m 2 / g

  16. Globally averaged energy-balance model C dT g / dt = Q [ 1 - α (T g ) ] - ( A + B T g ) η + F strat,g , C - heat capacity per unit area, T g - globally averaged surface air temperature, t - time, Q - insolation, α - planetary albedo, A and B - constants, correction factor for anthropogenic greenhouse effect η = 1- c 0 log (q C / q C,0 ), c 0 = 2.3*10 -2 , q C (q C,0 ) is the current (initial) atmospheric CO 2 concentration. Equilibrium climate sensitivity to CO 2 doubling in the atmosphere [Mokhov, 1981]: ∆ T 2CO2 = ( c 0 I 0 log 2 ) / ( 1 - Q k α + B) nd k a = d α / dT g , subscript '0' where I 0 = A + B T g,0 a indicates the present-day state

  17. EBM forcings specification i) q C = q C,0 exp ( t / t p ) t p - prescribed time scale F strat,g = - a strat τ strat,g , a strat = 22 W/ m 2, , ii) τ strat,g = k ext,strat M strat,g and M strat,g = τ life E 0 = const (stationarity approximation for M strat,g ). Governing parameters are varied between the different ensemble members: E 0 = 0.6-5 TgS/ yr τ res = 1-4 yr k ext,strat = 5-20 m 2 / g ∆ T 2CO2 = 1.5-4.5 K t p = 50-250 yr -1

  18. Global temperature change in years 0-100 obtained with an energy-balance model mitigation with τ res =2 yr, k ext,strat =7.6 m 2 / g no mitigation E 0 =1 TgS/ yr t p , centuries t p , centuries E 0 =4 TgS/ yr ∆ T 2CO2 , K t p , centuries IAP RAS CM ∆ T , K

  19. Emissions required to compensate the greenhouse-gases-induced warming (energy-balance model) E, TgS/yr t p =100 yr (~SRES A2), 12 τ res =2 yr 11 t p =100 yr (~SRES A2), 10 τ res =3 9 t p =136 yr (~SRES A1B), 8 τ res =2 7 t p =136 yr (~SRES A1B), 6 τ res =3 5 t p =230 yr (~SRES B1), τ res =2 4 3 t p =230 yr (~SRES B1), τ res =3 2 1 0 0 10 20 30 40 50 60 70 80 90 100 year

  20. Conclusions - 1 - For large annual emissions, large residence time of sulphates in the stratosphere, and large extinction coefficient it is possible to mitigate both global and regional warming to a large extent. However, if the ranges for above parameters are narrowed to presumably more realistic widths, the residual warming is > 1.8 K in the 21st century. Globally, the most efficient latitudinal distribution of geoengineering aerosols is that with high loading in the extratropics. At regional scale, other latitudinal distributions may be preferable. - However, stratospheric aerosol climate mitigation leads to less humidification of arid regions in comparison to non-mitigated anthropogenically induced warming. A caveat in this result is due to prescribed atmospheric relative humidity in the IAP RAS CM.

  21. Conclusions - 2 - Due to the fast removal of the mitigation effect if the corresponding emissions are stopped climate trajectory returns to the non-mitigated one within a few decades. This results in a necessity to continue mitigation very long in future, perhaps for several centuries in order to make it efficient. - The results obtained with the IAP RAS CM are further supported and interpreted by making use of an energy-balance climate model. It is shown that very high stratospheric sulphate emissions (up to 12 TgS/yr) are needed to compensate global warming expected in the 21st century.

  22. Thank you f or attention! Thank you f or attention!

Recommend


More recommend