how algorithmic confounding in recommendation systems
play

how algorithmic confounding in recommendation systems increases - PowerPoint PPT Presentation

how algorithmic confounding in recommendation systems increases homogeneity and decreases utility Allison J.B. Chaney Princeton University In collaboration with Brandon M. Stewart and Barbara E. Engelhardt Simulation Setup Simulation Setup


  1. how algorithmic confounding in recommendation systems increases homogeneity and decreases utility Allison J.B. Chaney Princeton University In collaboration with Brandon M. Stewart and Barbara E. Engelhardt

  2. Simulation Setup

  3. Simulation Setup alternative realities “world” content filtering social filtering matrix factorization popularity random ideal

  4. Jaccard Index ) = ) = | A ∩ B |

  5. Jaccard Index ) = ) = | A ∩ B | J ( A, B ) = | A ∩ B | ) = | A ∪ B |

  6. 100 0 iteration

  7. 100 0 iteration

  8. 100 0 iteration

  9. Claim 1: The recommendation feedback loop causes homogenization of user behavior .

  10. change in Jaccard index content MF popularity random social 0.50 0.25 0.00 − 0.25 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 utility relative to ideal

  11. change in Jaccard index content MF popularity random social 0.50 0.25 0.00 − 0.25 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 utility relative to ideal

  12. change in Jaccard index content MF popularity random social 0.50 0.25 0.00 − 0.25 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 utility relative to ideal

  13. change in Jaccard index content MF popularity random social 0.50 0.25 0.00 − 0.25 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 − 0.6 − 0.4 − 0.2 0.0 utility relative to ideal

  14. Claim 2: Users experience losses in utility due to homogenization effects; these losses are distributed unequally .

  15. Gini Coefficient A G ( A, B ) = line of equality A + B popularity of items item popularity curve (usually long tail) A ) = B items ordered by popularity

  16. Gini Coefficient A G ( A, B ) = line of equality A + B popularity of items item popularity curve (usually long tail) A G ∈ [0 , 1] ) = B maximal maximal equality items ordered by popularity inequality

  17. Claim 3: The feedback loop amplifies the impact of recommendation systems on the distribution of item consumption .

  18. Why do we need to think about algorithmic confounding ?

  19. Why do we need to think about algorithmic confounding ? better evaluation of recommendation systems

  20. Why do we need to think about algorithmic confounding ? better evaluation of recommendation systems understand the impacts on human behavior

  21. Why do we need to think about algorithmic confounding ? better evaluation of recommendation systems understand the impacts on human behavior design better systems to 
 increase fairness and social welfare

Recommend


More recommend