homogeneous first order equations
play

Homogeneous First Order Equations Bernd Schr oder logo1 Bernd - PowerPoint PPT Presentation

Overview An Example Double Check Homogeneous First Order Equations Bernd Schr oder logo1 Bernd Schr oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations Overview An Example Double


  1. Overview An Example Double Check Homogeneous First Order Equations Bernd Schr¨ oder logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  2. Overview An Example Double Check What are Homogeneous First Order Equations? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  3. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  4. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x 2. Recognizing homogeneous first order equations requires some pattern recognition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  5. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x 2. Recognizing homogeneous first order equations requires some pattern recognition. 3. To solve a homogeneous first order equation, we translate the equation into a separable equation. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  6. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x 2. Recognizing homogeneous first order equations requires some pattern recognition. 3. To solve a homogeneous first order equation, we translate the equation into a separable equation. 3.1 The substitution v = y x turns the homogeneous first order � y equation y ′ = f � into a separable equation for v , x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  7. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x 2. Recognizing homogeneous first order equations requires some pattern recognition. 3. To solve a homogeneous first order equation, we translate the equation into a separable equation. 3.1 The substitution v = y x turns the homogeneous first order � y equation y ′ = f � into a separable equation for v , x 3.2 We can even state the resulting separable equation, but it is simpler to remember the substitution v = y x , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  8. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x 2. Recognizing homogeneous first order equations requires some pattern recognition. 3. To solve a homogeneous first order equation, we translate the equation into a separable equation. 3.1 The substitution v = y x turns the homogeneous first order � y equation y ′ = f � into a separable equation for v , x 3.2 We can even state the resulting separable equation, but it is simpler to remember the substitution v = y x , 3.3 After we solve the equation for v , we obtain y as xv . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  9. Overview An Example Double Check What are Homogeneous First Order Equations? 1. A homogeneous first order equation is of the form � y y ′ = f � . x 2. Recognizing homogeneous first order equations requires some pattern recognition. 3. To solve a homogeneous first order equation, we translate the equation into a separable equation. 3.1 The substitution v = y x turns the homogeneous first order � y equation y ′ = f � into a separable equation for v , x 3.2 We can even state the resulting separable equation, but it is simpler to remember the substitution v = y x , 3.3 After we solve the equation for v , we obtain y as xv . That’s it. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  10. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  11. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  12. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y x , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  13. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y = vx ( !! ) x , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  14. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  15. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , y y y ′ = x − e x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  16. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , y y v ′ x + v = x − e x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  17. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , y v ′ x + v = v − e x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  18. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , v ′ x + v v − e v = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  19. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , v ′ x + v v − e v = v ′ x − e v = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  20. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Reduction to a separable equation. v : = y y ′ = v ′ x + v y = vx ( !! ) x , v ′ x + v v − e v = v ′ x − e v = − 1 v ′ xe v = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  21. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Solving the separable equation. dv − 1 xe v = dx logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  22. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Solving the separable equation. dv − 1 xe v = dx − 1 e − v dv = x dx logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  23. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Solving the separable equation. dv − 1 xe v = dx − 1 � � e − v dv = x dx logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  24. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Solving the separable equation. dv − 1 xe v = dx − 1 � � e − v dv = x dx − e − v = − ln | x | + c logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

  25. Overview An Example Double Check Solve the Initial Value Problem y ′ = y y x − e x , y ( 1 ) = 1. Solving the separable equation. dv − 1 xe v = dx − 1 � � e − v dv = x dx − e − v = − ln | x | + c e − v = ln | x |− c logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Homogeneous First Order Equations

Recommend


More recommend