holographic entanglement in gauss bonnet gravity time and
play

Holographic Entanglement in Gauss-Bonnet gravity: time and shadows E - PowerPoint PPT Presentation

Holographic Entanglement in Gauss-Bonnet gravity: time and shadows E LENA C CERES Facultad de Ciencias Universidad de Colima, Mexico Theory Group University of Texas at Austin (work in progress with M. Sanchez and J. Virrueta) March 25,


  1. Holographic Entanglement in Gauss-Bonnet gravity: time and shadows E LENA C ÁCERES Facultad de Ciencias Universidad de Colima, Mexico Theory Group University of Texas at Austin (work in progress with M. Sanchez and J. Virrueta) March 25, 2015 E. Cáceres (UCol/UT-Austin) 1

  2. Outline 1. Motivation 2. Gauss Bonnet gravity 3. HEE in time dependent GB gravity 4. HEE shadows in GB gravity E. Cáceres (UCol/UT-Austin) 2

  3. M OTIVATION Bulk reconstruction. Emergence of spacetime. 1. String corrections, finite but large � tHooft I Generic form of higher derivatives corrections is not known I Effective five-dimensional gravity theory Z d 5 x p − g ( R − 2 ⇤ + L 2 ( ↵ 1 R 2 + ↵ 2 R µ ⌫ R µ ⌫ + ↵ 3 R µ ⌫⇢� R µ ⌫⇢� )) 1 S = 16 ⇡ G N where ⇤ = − 6 / L 2 and we assume ↵ i << 1 . 2. Higher derivative theories can lead to interesting physics: i.e. η s bound violation for ↵ 3 > 0 ⌘ s = 1 4 ⇡ ( 1 − 8 ↵ 3 ) + O ( ↵ 2 i ) E. Cáceres (UCol/UT-Austin) 3

  4. 3. Higher derivative theories have c 6 = a I Conformal anomaly of 4 dimensional CFT c a h T µ µ i = 16 ⇡ 2 I 4 − 16 ⇡ 2 E 4 where I 4 = C abcd C abcd = R abcd R abcd − 2R ab R ab + 1 3R 2 E 4 == R abcd R abcd − 4R ab R ab + R 2 I Holographically, I 4 − something 0 µ i = something h T µ E 4 16 ⇡ 2 16 ⇡ 2 I comparing both expressions we get ↵ 3 ∼ c − a 8c E. Cáceres (UCol/UT-Austin) 4

  5. T WO QUESTIONS 1) How deep behind the horizon does the HEE probe in time dependent GB theories? 1.2 1.0 0.8 z H x L - 1 0.6 0.4 0.2 0 1 2 3 4 5 6 7 v H x L 2) In global AdS 9 regions not probed by minimal surfaces, "shadows". Effect of � GB on shadows? Do CFT dual to higher derivative theories "know" more about the bulk? E. Cáceres (UCol/UT-Austin) 5

  6. G AUSS -B ONNET GRAVITY Z d 5 x p − g L 2 + � L 2 ✓ ◆ 1 R + 12 S grav = 2 L ( 2 ) , 16 ⇡ G N L ( 2 ) = R µ ⌫⇢� R µ ⌫⇢� − 4R µ ⌫ R µ ⌫ + R 2 I Exact solutions are known Black hole solution, ds 2 = − L 2 dv 2 + L 2 f ( z ) ✓ ◆ − 2 x 2 p f 0 dzdv + d ¯ , z 2 z 2 f 0 f ( z ) = 1 q 1 − 4 � ( 1 − mz 4 )] . 2 � [ 1 − E. Cáceres (UCol/UT-Austin) 6

  7. dv = dt − dz f ( z ) p f 0 = 1 ⇣ ⌘ (1) 1 − 1 − 4 � . 2 � In Poincarè coordinates ds 2 = − L 2 dt 2 + L 2 x 2 + L 2 dz 2 f ( z ) (2) z 2 d ¯ f ( z ) . z 2 z 2 f 0 E. Cáceres (UCol/UT-Austin) 7

  8. Note that: I Causality bounds: (3) − 7 / 36  �  9 / 100 , I Central charges: c = ⇡ 2 L 3 a = ⇡ 2 L 3 (4) ( 1 − 2 � f 0 ) , ( 1 − 6 � f 0 ) l 3 l p p I Singularity at finite z for � < 0 , 1 2m ( v ) 1 / 4 ( − 1 / � + 4 ) 1 / 4 p z sing = E. Cáceres (UCol/UT-Austin) 8

  9. HEE IN TIME DEPENDENT G AUSS -B ONNET S = S grav +  S ext where the external source is unespecified ds 2 = − L 2 dv 2 + L 2 f ( z , v ) ✓ − 2 ◆ x 2 p f 0 dzdv + d ¯ , z 2 z 2 f 0 p f 0 = 1 where 2 � ( 1 − 1 − 4 � ) ,  � f ( z , v ) = 1 q 1 − 4 � ( 1 − m ( v ) z 4 ) 1 − 2 � I m ( v ) is arbitrary I S ext yields the following energy-momentum tensor µ ⌫ = 3 2z 3 dm ( 16 ⇡ G N )  T ext dv � µv � ⌫ v . E. Cáceres (UCol/UT-Austin) 9

  10. Previous work focused on thermalizarion time ( Li, Wu and Yang 2013) I Apparent horizon z AH = m ( v ) 1 / 4 I Event horizon: z 0 1 EH ( v ) = − 2 p f 0 f ( z EH , v ) E. Cáceres (UCol/UT-Austin) 10

  11. Covariant prescription Hubeny, Rangamani, Takayanagi 07 S A = Area extrm ( � A ) AdS d+1 G d + 1 d N ∂ A Codimension 2 surface A Homology condition � A ∼ A γ A bulk region r s . t . � r = � A [ A 9 E. Cáceres (UCol/UT-Austin) 11

  12. Entanglement entropy in GB (Hung, Myers, Solkin, 2011) Z Z p d 3 ⇠ p � ( 1 + � L 2 R ⌃ ) + 1 1 d 2 ⇠ S EE = h � K 4G N 2G N ⌃ @⌃ I R ⌃ : Ricci scalar for intrinsic geometri on ⌃ I K : trace of extrinsic curvature on @⌃ E. Cáceres (UCol/UT-Austin) 12

  13. I Study “rectangular strip" for the time-dependent case. I z ( x ) , v ( x ) I Induced metric on the co-dimension two surface is ds 2 = L 2 3 ) + L 2 ✓ ◆ 1 − f 2 v 0 2 − v 0 z 0 (5) z 2 ( dx 2 2 + dx 2 dx 2 , p f 0 z 2 f 0 E. Cáceres (UCol/UT-Austin) 13

  14. Thus, p � = L 3 p 1 f 0 v 0 z 0 ⌘ 1 / 2 ⇣ f 0 − fv 0 2 − 2 (6) p f 0 , z 3 p z 0 2 � L 2 p � R ⌃ = ( 2L 3 � f 0 − fv 0 2 − 2 p f 0 v 0 z 0 � 1 / 2 + dF (7) f 0 ) dz , z 3 � where, p z 0 F ( x ) = ( 4L 3 � (8) f 0 ) f 0 − fv 0 2 − 2 p f 0 v 0 z 0 � 1 / 2 z 2 � E. Cáceres (UCol/UT-Austin) 14

  15. Finally, action to be extremized is, Z dz L 3 p ⇣ f 0 v 0 z 0 ⌘ 1 / 2 f 0 − fv 0 2 − 2 S eff = p f 0 + z 3 4G N # 2 � f 0 z 0 2 f 0 − fv 0 2 − 2 p f 0 v 0 z 0 � 1 / 2 � E. Cáceres (UCol/UT-Austin) 15

  16. I Time dependent, minimal surfaces penetrate the horizon, but do not reach singularity I How does this change with � I in other words , the region accesible to the holographic probes increases or decreases with � ? E. Cáceres (UCol/UT-Austin) 16

  17. Results l= 0.05 l=- 0.05 1.0 1.0 t b = 0.8 t b = 0.8 t b = 1 t b = 1 t b = 1.2 t b = 1.2 0.5 0.5 Schw Schw AdS AdS S S 0.0 0.0 - 0.5 - 0.5 - 1.0 - 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 l l l=- 0.05 l= 0.05 1.5 1.5 1.0 1.0 r r 0.5 0.5 0.0 0.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 v v E. Cáceres (UCol/UT-Austin) 17

  18. Figure : illustration of r min vs ` / 2 (numerics in progress) Theories with � < 0 probe deeper behind the horizon than Einstein gravity . Theories with � > 0 explore less For � < 0 and large ` the entanglement probes can reach arbitrarily close to the singularity E. Cáceres (UCol/UT-Austin) 18

  19. HEE S HADOWS IN GB Global, static. Holographic Entanglement entropy Ryu, Tagayanagi 06 S A = Area min ( � A ) AdS d+1 G d + 1 d N ∂ A A Codimension 2 surface Homology condition � A ∼ A γ A bulk region r s . t . � r = � A [ A 9 E. Cáceres (UCol/UT-Austin) 19

  20. Minimal surfaces in global BTZ 8 ⇣ ⌘ c 2 r ∞ #  # X < 3 log r + sinh ( r + # / 2 ) , S A ( # ) = ⇣ ⌘ 2 r ∞ c 3 ⇡ r + + c # � # X : 3 log r + sinh ( r + ( 2 ⇡ − # ) / 2 ) , # X ( r + ) = 2 coth − 1 ( 2 coth ( ⇡ r + ) − 1 ) . r + E. Cáceres (UCol/UT-Austin) 20

  21. E. Cáceres (UCol/UT-Austin) 21

  22. S HADOWS I Entanglement shadow: regions of the bulk not reached by any HEE probe i.e. maximum depth among all boundary regions. Balasubramanian et. al. 2014 I Behavior associated with phase transition S 3.0 2.5 2.0 1.5 1.0 0.5 J 1 2 3 4 5 6 - 0.5 E. Cáceres (UCol/UT-Austin) 22

  23. Entanglement Shadow Freivogel et. al 14.12.5175 � = r ⇤ − r h = 2r H e − ⇡ r H sinh ( ⇡ r H ) r ss 0.6 0.5 0.4 0.3 0.2 0.1 rh 0.5 1.0 1.5 2.0 2.5 3.0 for r H << ` AdS I � ∼ # r H + ..... H e − # r H + .... for r H >> ` AdS I � ∼ r 2 Similar limiting behaviour in AdS 5 . E. Cáceres (UCol/UT-Austin) 23

  24. Entanglement Shadows in Gauss-Bonnett I Black hole in global AdS 5 , small � I Assume the 3-dimensional boundary region of interest is O ( 3 ) symmetric, r ( ✓ ) dt 2 + dr 2 ds 2 = − f ( r ) f ( r ) + r 2 ( d ✓ 2 + sin 2 ( ✓ ) d ⌦ 2 ) f ∞ f ( r ) = 1 + r 2 q 1 + 4 � (( rh 2 + rh 4 + � )) / r 4 − 4 � ]) 2 � ( 1 − where f ∞ is a convenient normalization factor, f ∞ = 1 − p 1 − 4 λ 2 λ E. Cáceres (UCol/UT-Austin) 24

  25. HEE, prescription for higher derivatives. Action to minimize, s r 0 ( ✓ ) 2 r ( ✓ ) 2 sin ( ✓ ) 2 + 2 � f ( r ) + r ( ✓ ) 2 � � L = + 2 � r ( ✓ ) 2 cos ( ✓ ) 2 + sin ( 2 ✓ ) r ( ✓ ) r 0 ( ✓ ) + sin ( ✓ ) 2 r 0 ( ✓ ) 2 q r 0 ( ✓ ) 2 f ( r ) + r ( ✓ ) 2 Study shadows numerically –in progress. E. Cáceres (UCol/UT-Austin) 25

  26. Following Frievogel et al 14125175, approximate solution near the horizon I expand eom close to the horizon I assume r 0 ( ✓ ) is small r 00 ( ✓ ) + 2 cot ( ✓ ) r 0 ( ✓ ) + r ( ✓ ) H ( rh , � ) + ˜ H ( rh , � ) Can be solved with r ( 0 ) = r ⇤ , r 0 ( 0 ) ∼ 0 . For small � , 1 k 3 rh 2 csc ( ✓ )( k 3 rh 3 sin ( ✓ ) + ( rh − r s )( 6k ( 1 + 2rh 2 ) ✓� cosh ( k ✓ ) r ( ✓ ) = − ( 6 � + rh 2 ( k 2 + 12 � )) sinh ( k ✓ )) E. Cáceres (UCol/UT-Austin) 26

  27. p where k = 5 + rh 2 Shadow size: r ⇤ − r h ⌘ � , E. Cáceres (UCol/UT-Austin) 27

  28. I Large black holes, similar behaviour as � = 0 � ∼ rh 2 e − # rh I Small black holes � ∼ # rh + � p ( rh ) where p ( rh ) > 0 ! For � < 0 shadow is smaller E. Cáceres (UCol/UT-Austin) 28

  29. Conclusions: I In time dependent case, EE can explore arbitrarily close to the singularity. I In static global case, shadow size is smaller for � GB < 0 Theories with � GB < 0 "know more" of the bulk than � � 0 . I Bulk reconstruction. What CFT observables access regions in entanglement shadow? i.e what is the right probe? I How generic is the entanglement shadow region? I Nonlocality? E. Cáceres (UCol/UT-Austin) 29

Recommend


More recommend