holographic characterization
play

Holographic Characterization of Protein Aggregates Size, morphology - PowerPoint PPT Presentation

Holographic Characterization of Protein Aggregates Size, morphology and differentiation one particle at a time (and fast) D. G. Grier, C. Wang, X. Zhong, & M. D. Ward New York University D. B. Ruffner & L. A. Philips Spheryx, Inc


  1. Holographic Characterization of Protein Aggregates Size, morphology and differentiation … one particle at a time (and fast) D. G. Grier, C. Wang, X. Zhong, & M. D. Ward New York University D. B. Ruffner & L. A. Philips Spheryx, Inc

  2. Holographic Characterization Particle-resolved measurements of  Radius: subvisible range 200 nm to 10 m m  Refractive index: proxy for composition Useful for differentiation  Morphology Useful for differentiation Useful for analyzing aggregation mechanism  Concentration Divide observed counts by measured sample volume  Real-time processes 30 measurements/second Complete analysis in 10 minutes 2 2016 UMB-CERSI

  3. So, what’s the problem? 3 2016 UMB-CERSI

  4. Conventional Characterization (DLS) 40 PDMS spheres in water 0 500 1000 Malvern Zetasizer Nano ZS 4 2016 UMB-CERSI

  5. Holographic Characterization 1.42 1.0 Relative Probability 1.41 Refractive Index 1.40 0.5 1.39 5,000 spheres one sphere 1.38 1.37 0 0.4 0.6 0.8 1.0 1.2 Radius Wang, et al. , Soft Matter 11 , 1062 (2015) 5 2016 UMB-CERSI

  6. Holographic Tracking & Characterization Lorenz-Mie Microscopy Parameters 3D Position 𝒔 𝑞 (𝑢) Tracking 𝑏 𝑞 Radius Characterization Refractive Index 𝑜 𝑞 Lee et al. , Optics Express 15 , 18275 (2007) 6 2016 UMB-CERSI

  7. Holographic Tracking & Characterization How Lorenz-Mie Microscopy works Incident plane wave: Scattered field: : position : radius : refractive index Focal plane Lee et al. , Optics Express 15 , 18275 (2007) 7 2016 UMB-CERSI

  8. Holographic Tracking & Characterization How Lorenz-Mie Microscopy works Lee et al. , Optics Express 15 , 18275 (2007) 8 2016 UMB-CERSI

  9. Holographic Tracking & Characterization How Lorenz-Mie Microscopy works Lorenz-Mie scattering coefficients for a sphere: • relative radius: • refractive index: Lee et al. , Optics Express 15 , 18275 (2007) 9 2016 UMB-CERSI

  10. Lorenz-Mie Microscopy Lee et al. , Optics Express 15 , 18275 (2007) 10 2016 UMB-CERSI

  11. Holographic Tracking & Characterization Independently verified performance Property Precision Range 100 × 100 × 100 𝜈 m 3 Δ𝒔 𝑞 ≤ 3 nm 3D Position Radius Δ𝑏 𝑞 ≤ 2 nm 200 nm − 20 𝜈 m Δ𝑜 𝑞 ≤ 10 −3 Refractive Index 1 − 5 10 3 mL −1 − 10 8 mL −1 Δ𝑑 𝑞 ≈ 𝑑 𝑞 Concentration NIST Traceable Particles 𝑒 𝑞 = 2 𝑏 𝑞 = 1.54 ± 0.05 𝜈 m 𝑜 𝑞 = 1.598 ± 0.005 Bangs Labs #12035 Krishnatreya et al. , Am. J. Phys. 82 , 23 (2014) 11 2016 UMB-CERSI

  12. Holographic Tracking & Characterization Independently verified performance Property Precision Range 100 × 100 × 100 𝜈 m 3 Δ𝒔 𝑞 ≤ 3 nm 3D Position Radius Δ𝑏 𝑞 ≤ 2 nm 200 nm − 20 𝜈 m Δ𝑜 𝑞 ≤ 10 −3 Refractive Index 1 − 5 10 3 mL −1 − 10 7 mL −1 Δ𝑑 𝑞 ≈ 𝑑 𝑞 Concentration NIST traceable PS Measured flow volume (no calibration) Krishnatreya et al. , Am. J. Phys. 82 , 23 (2014) 12 2016 UMB-CERSI

  13. Automated Holographic Characterization 1. Particles pass through laser beam in microfluidic channel 3. Compare measurement to scattering theory 2. Microscope records interference pattern 4. Comparison yields 5. Build statistics: : radius Each point : refractive index characterizes : 3D position one particle Size/refractive index distribution: for 2,500 spheres acquired in 10 minutes 13 2016 UMB-CERSI

  14. Characterizing Colloidal Mixtures silica polystyrene Yevick, Hannel & Grier, Optics Express 22 , 22864 (2014) 14 2016 UMB-CERSI

  15. Characterizing Protein Aggregates BSA in Tris + added salt Wang et al. , J. Pharm. Sci. 105 , 1074 (2016) 15 2016 UMB-CERSI

  16. Differentiating Silicone Oil Droplets Wang et al. , J. Pharm. Sci. 105 , 1074 (2016) 16 2016 UMB-CERSI

  17. Characterizing Protein & Contaminants Wang et al. , J. Pharm. Sci. 105 , 1074 (2016) 17 2016 UMB-CERSI

  18. Effective Medium Theory Porous particle Material: Refractive index: Volume fraction: Medium: Refractive index: Effective refractive index: Lorentz-Lorenz factor: Cheong et al. , Soft Matter 7 , 6816 (2011) 18 2016 UMB-CERSI

  19. Fractal Aggregates Volume fraction: Effective Medium Theory: Size-Index Scaling: Wang et al. , Soft Matter 12 , 8774 (2016) 19 2016 UMB-CERSI

  20. Fractal Scaling of Protein Aggregates Bovine Serum Albumin Bovine Insulin Filamentary clusters Cluster-cluster aggregates Wang et al. , Soft Matter 12 , 8774 (2016) 20 2016 UMB-CERSI

  21. Holographic Characterization of Human IgG 10 -1 10 -2 10 -3 silicone 10 -4 1 10 1 10 Large fractal dimension: compact clusters Differentiation between protein aggregates and silicone droplets Ruffner et al. , unpublished (2016) 21 2016 UMB-CERSI

  22. Holographic Characterization  Detects, counts and characterizes subvisible protein aggregates in situ  Differentiates by composition & morphology  Fast, time-resolved measurements  Independently verified precision & accuracy  Minimal calibration 22 2016 UMB-CERSI

  23. 23 2016 UMB-CERSI

  24. Comparison with Industry Standard DLS (Malvern Zetasizer Nano) 1. Consistent mean radius results in common range 2. HVM also works for larger particles 3. HVM results have smaller (better) instrumental spread 4. HVM also yields refractive index (porosity) Cheong et al. , Opt. Express 17 , 13071 (2009) Cheong, Xiao, Pine & Grier, Soft Matter 7 , 6816 (2011) 24 2016 UMB-CERSI

  25. So, what do our clusters look like? hologram fit 25 2016 UMB-CERSI

  26. So, what do our clusters look like? hologram fit Holographic Deconvolution Microscopy Dixon et al., Opt. Express 19 , 16410 (2011) Chen et al. , J. Pharm. Sci. 105 , 1074 (2016) 26 2016 UMB-CERSI

  27. So, what do our clusters look like? hologram fit 27 2016 UMB-CERSI

  28. So, what do our clusters look like? hologram fit 28 2016 UMB-CERSI

  29. So, what do our clusters look like? hologram fit 29 2016 UMB-CERSI

Recommend


More recommend