“High p T probing of baryonic m atter” S.S. Shimanskiy (JINR, LHEP) 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Plan 1. States of baryonic matter 2. Cold dense baryonic matter 3. Cumulative processes. What we have seen? 4. Future 02.07.2014 HSQCD'2014 Shimanskiy S.S.
F. Close Structure of Matter A * A Two ways that structure is revealed: p True from atoms to particles….. 02.07.2014 HSQCD'2014 3 Shimanskiy S.S.
+ CERN Yellow Report 2007-005, p.75 2008-005 Nuclear Physics A 837 (2010) 65 – 86 RHIC Time(BNL) Nuclotron-SPS Time (CERN) 02.07.2014 HSQCD'2014 4 Shimanskiy S.S.
02.07.2014 HSQCD'2014 5 Shimanskiy S.S.
02.07.2014 HSQCD'2014 Shimanskiy S.S.
Thermalization in Elementary Collisions ? Beccatini, Heinz, Z.Phys. C76 (1997) 269 • T 170 MeV (good old Hagedorn temperature) • T ch does not (or only weakly) depends on s 02.07.2014 HSQCD'2014 • Universal hadronization mechanism at critical values ? Shimanskiy S.S.
Cold dense baryonic matter is not created during AA-collisions. 02.07.2014 HSQCD'2014 Shimanskiy S.S.
02.07.2014 HSQCD'2014 9 Shimanskiy S.S.
V.S. Stavinsky JINR Rapid Communications N18-86, p.5 (1986) (X I M I ) + (X II M II ) m c + [X I M I + X II M II + m 2 ] Quark-parton model (X I P I ) + (X II P II ) M(X I ,X II ) P I { A I { X I Cumulative particle } S>S 0 { { X II A II P II kinematic limit for free NN- interaction 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Cumulative and Subthreshold processes S cumulative > S 0 X I [0,A I ] and X II [0,A II ] X I = X II = 1 - for free NN-interaction kinematical borders S 0 02.07.2014 HSQCD'2014 Shimanskiy S.S.
X I > 1, X II > 1 S 0 - kinemat. X I >1 X II > 1 y 0 Cumulative processes: 1) X I ≤ 1 and X II > 1 Fragmentation } 2) X II ≤ 1 and X I > 1 regions 3) X I > 1 and X II > 1 Central region 02.07.2014 HSQCD'2014 12 Shimanskiy S.S.
SPECTRA 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Cumulative processes A.M.Baldin,V.S.Stavinskiy et al. Dubna 1971
A.V. Efremov (1976) Parton description A + B C + X 3 d x y ( ) ( ) ( ) ( , , ) dxdydzF y F x G z v xys t u B A C 3 d p z z x II x I 02.07.2014 HSQCD'2014 Shimanskiy S.S.
02.07.2014 HSQCD'2014 Shimanskiy S.S.
Fluctons Probability inside nuclei 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Schroeder L.S. et al. // Phys. Rev. Lett. 1979. V. 43, n. 24. P. 1787 A.M.Baldin et al., Yad.Fiz., 20, 1975, p.1201 Эксперимент указывает, что отношение выходов кумулятивных пионов π +/ π - равно единице 02.07.2014 HSQCD'2014 Shimanskiy S.S.
19
А – dependence (1974- …) _ A heavy nuclei d ( ) ~ p A А light nuclei 1 n _ dp 5|/3 _ A for d d ( ) ~ p A B 2 _ dp A for t The same time Cronin team at FNAL have seen about the same A-dependence for pA(for 200, 300, 400 GeV protons) high p T Particle production
21
DIS 02.07.2014 HSQCD'2014 Shimanskiy S.S.
K.Rith 02.07.2014 HSQCD'2014 Shimanskiy S.S.
02.07.2014 HSQCD'2014 Shimanskiy S.S.
02.07.2014 HSQCD'2014 25 Shimanskiy S.S.
26 Shimanskiy S.S.
eA scattering JLAB data A.Stavinskiy, ITEP seminar, 11.4.2007 02.07.2014 HSQCD'2014 Shimanskiy S.S.
JLAB Phys Seminar Dec05 K. Egiyan Having these data, we know almost full ( 99%) nucleonic picture of nuclei with A 56 Single particle (%) 2N SRC (%) 3N SRC (%) Fractions Nucleus 56 Fe 76 ± 0.2 ± 4.7 23.0 ± 0.2 ± 4.7 0.79 ± 0.03 ± 0.25 12 C 80 ± 02 ± 4.1 19.3 ± 0.2 ± 4.1 0.55 ± 0.03 ± 0.18 4 He 86 ± 0.2 ± 3.3 15.4 ± 0.2 ± 3.3 0.42 ± 0.02 ± 0.14 3 He 92 ± 1.6 8.0 ± 1.6 0.18 ± 0.06 96 ± 0.8 2 H 4.0 ± 0.8 ----- Using the published data on (p,2p+n) [PRL,90 (2003) 042301] estimate the isotopic composition of 2N SRC in 12 C a pp ( 12 C) 4 ± 2 % a 2N ( 12 C) 20 ± 0.2 ± 4.1 % a pn ( 12 C) 12 ± 4 % a nn ( 12 C) 4 ± 2 % 02.07.2014 HSQCD'2014 28 Shimanskiy S.S.
12 C - structure RNP – program at JINR eA – program at JLab V.V.B., V.K.Lukyanov, A.I.Titov, PLB, 67, 46(1977) R.Subedi et al., Science 320 (2008) 1476-1478 e-Print: arXiv:0908.1514 [nucl-ex] 02.07.2014 HSQCD'2014 29 Shimanskiy S.S.
SRC « FLUCTON » 02.07.2014 HSQCD'2014 Shimanskiy S.S.
02.07.2014 HSQCD'2014 Shimanskiy S.S.
Phys.Rev. C85 (2012) 054904 32
Phys.Rev. C85 (2012) 054904 33
Where and which model are correct? 02.07.2014 HSQCD'2014 Shimanskiy S.S.
The Correlation Measurements pA->h+ Х x T ~ 1 Magnet Spectrometer Tracker 35
SPIN Magnet Spectrometer protons 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Physics of Atomic Nuclei, 2013, Vol. 76, No. 10, pp. 1213 – 1218 Measurement of the Yields of Positively Charged Particles at an Angle of 35 ◦ in Proton Interactions with Nuclear Targets at an Energy of 50 GeV 02.07.2014 HSQCD'2014 Shimanskiy S.S.
h + - spectrum 02.07.2014 HSQCD'2014 Shimanskiy S.S.
A-dependence 02.07.2014 HSQCD'2014 Shimanskiy S.S.
[2012] 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Ratio 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Ratio p/ + (2013) 02.07.2014 HSQCD'2014 Shimanskiy S.S.
- / +(2013) PRELIMINARY PRELIMINARY
Ratio d/p 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Ratio t/d 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Average baryon number <B> PRELIMINARY 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Flucton fragmentation – same side flow 02.07.2014 HSQCD'2014 48 Shimanskiy S.S.
FUTURE 02.07.2014 HSQCD'2014 Shimanskiy S.S.
IHEP, Protvino FODS 02.07.2014 HSQCD'2014 Shimanskiy S.S.
The PANDA Detector ( ) ' { } p p A p X target generator muon counters EM and hadron TOF stop calorimeters solenoid dipole RICH drift or wire chambers beam interaction point 12 m
Exclusive reactions as way to resolve questions B (p, , …), M ( , K , l…) p p B B M M B M { p p } M B 02.07.2014 52
studies at x T ~ 1 pp pp pp } The counting rules and isotopic symmetry studies, p T ~ 2 GeV/c anomaly(?) ? pp nn } ( ) Detail vertexes studies: pp pp KK ( ) ( ) ( ) q q q q quark antiquark ( , ) p p KK ( ) ( ) ( ) q q qq qq quark antidiquark ( ) qq qq diquark antidiquark pp
END 02.07.2014 HSQCD'2014 Shimanskiy S.S.
02.07.2014 HSQCD'2014 55 Shimanskiy S.S.
Color(nuclear) transparency in 90 0 c.m. quasielastic A ( p ,2 p ) reactions The incident momenta varied from 5.9 to 14.4 GeV/ c , corresponding to 4.8 < Q 2 <12.7 (GeV/ c ) 2 . 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Color(nuclear) transparency ? p T 1.55 1.83 2.07 2.28 2.48 2.66 02.07.2014 HSQCD'2014 Shimanskiy S.S.
The nuclear modification factor at RHIC and LHC • quantify departure from binary scaling in AA ratio of yield in AA versus reference collisions • e.g.: reference is pp R AA Yield 1 AA R AA Yield Nbin pp AA • …or peripheral AA Rcp (“central to peripheral”) Nbin Yield AA, periph AA, central R cp Yield Nbin AA, periph AA, central FA - CERN Summer Student Lectures - August 2011 02.07.2014 58
CT region 02.07.2014 HSQCD'2014 Shimanskiy S.S.
p T ~2 GeV/c anomaly at high energy (RHIC and LHC) 02.07.2014 HSQCD'2014 Shimanskiy S.S.
Charged hadron suppression in Pb-Pb harged hadron suppression in Pb-Pb Pb Pb 𝐵𝐵 /𝑂 𝑑𝑝𝑚𝑚 𝑆 𝐵𝐵 = 𝑂 𝐾𝑓𝑢 𝑞𝑞 𝑂 𝐾𝑓𝑢 Pb Pb EPJC 72 (2012) 1945 For central collisions: A pronounced minimum at 𝑄 𝑈 = 6 − 7 𝐻𝑓𝑊 where 𝑆 𝐵𝐵 ≈ 0.2 At higher 𝑄 𝑈 𝑆 𝐵𝐵 rises and levels off above 40 GeV Suppression at high 𝑄 𝑈 at the same level as jet suppression 02.07.2014 HSQCD'2014 Shimanskiy S.S.
J.W. Cronin et al., Production of hadrons at large transverse momentum at 200, 300, and 400 GeV, Phys.Rev. D, v.11, N 11, 3105-3123 (1975) p T ~ 2 GeV/c region V.S. Pantuev Physics of Atomic Nuclei, 2009, Vol. 72, No. 12, pp. 1971 – 1981 02.07.2014 HSQCD'2014 Shimanskiy S.S.
63 Shimanskiy S.S.
02.07.2014 HSQCD'2014 Shimanskiy S.S.
0 (90 ) p p pp E.A. Crosbie et al., Phys.Rev. D, vol.23, N3,1981 p T ~ 2 GeV/c 65
pp -> π + X 02.07.2014 66
Recommend
More recommend