high frequency waves and the maximal smoothing effect for
play

High frequency waves and the maximal smoothing effect for nonlinear - PowerPoint PPT Presentation

High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws Stphane Junca Labo JAD, Universit de Nice Sophia-Antipolis & Coffee Team INRIA June 25 2012 Stphane Junca (Nice) HYPERBOLIC PDEs 2012


  1. High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws Stéphane Junca Labo JAD, Université de Nice Sophia-Antipolis & Coffee Team INRIA June 25 2012 Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 1 / 33

  2. Sommaire Conjecture : Lions, Perthame, Tadmor 1994 1 High frequency waves 2 dimension d = 1 d>1 Sobolev estimates Characterization of Nonlinear Flux 3 Bound of the uniform maximal smoothing effect 4 Recent Works 5 Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 2 / 33

  3. Sommaire Conjecture : Lions, Perthame, Tadmor 1994 1 High frequency waves 2 dimension d = 1 d>1 Sobolev estimates Characterization of Nonlinear Flux 3 Bound of the uniform maximal smoothing effect 4 Recent Works 5 Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 3 / 33

  4. I) Lions, Perthame, Tadmor 1994 ∂ u ∂ t + ∇ · F ( u ) = 0 u ( 0 , X ) = u 0 ( X ) R d → I R d , R d X ∈ I u : [ 0 , + ∞ ) × I R , F : I R → I Smoothing effect for NONLINEAR flux M > 0 , ∃ s = s ( F , M ) > 0 u ∈ W s , 1 R d ) ∩ W s , 1 R d ) , | u 0 ( X ) | ≤ M ⇒ loc (] 0 , + ∞ [ × I loc ( I ∀ t > 0 sup X Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 4 / 33

  5. II) Lions, Perthame, Tadmor 1994 NONLINEAR flux velocity : a ( v ) = F ′ ( v ) : ∃ α > 0 , ∃ C > 0 , C δ α measure {| v | ≤ M , | τ + ξ · a ( v ) | ≤ δ } ≤ sup τ 2 + | ξ | 2 = 1 α Sobolev exponent : ∀ s < 2 + α α Improvement : Tadmor, Tao, 2007 : ∀ s < 1 + 2 α Conjecture : Lions, Perthame, Tadmor 1994 s sup = α sup Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 5 / 33

  6. III) Lions, Perthame, Tadmor 1994 s uniform UNIFORM Sobolev bound and boundary layers Let M > 0 , ε > 0 , A > 0 , s < s ( F , M ) , ∃ C = C ( ε, s , � u 0 � ∞ , A ) � u 0 � L ∞ ≤ M � u � W s , 1 ([ ε, A ] × [ − A , A ] d ) + sup t >ε � u ( t , . ) � W s , 1 ([ − A , A ] d ) ≤ C Proof : Kinetic formulation & averaging lemmas ∂ t f + a ( v ) . ∇ x f = ∂ v m f ( t , x , v ) , v ∈ I R , m ( t , x , v ) ≥ 0 Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 6 / 33

  7. Sommaire Conjecture : Lions, Perthame, Tadmor 1994 1 High frequency waves 2 dimension d = 1 d>1 Sobolev estimates Characterization of Nonlinear Flux 3 Bound of the uniform maximal smoothing effect 4 Recent Works 5 Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 7 / 33

  8. One dimensional case : d = 1 Linear case : a ′ ≡ 0 ∂ u ∂ t + c ∂ u ∂ x = 0 No smoothing effect : u ( t , x ) = u 0 ( x − ct ) Propagations of high oscillations with large amplitude : � x − ct � � x � u 0 ε ( x ) = u 0 ⇒ u ε ( t , x ) = u 0 , ε ε where u 0 is periodic. Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 8 / 33

  9. The strongest Nonlinear case : strictly convex flux � 1 with u 0 ( x + 1 ) ≡ u 0 ( x ) ∈ L ∞ ( I R ) and mean u 0 = u 0 ( θ ) d θ 0 f ( u ) = u 2 ∂ u ∂ t + ∂ f ( u ) R , a ′ ( v ) � = 0 , , ∀ v ∈ I ∂ x 2 Smoothing effect, O. Oleinik ; P . D. Lax 50’ C On ( 0 , 1 ) Total variation u ( t , . ) ≤ t . ⇒ Decay of the amplitude, | u ( t , x ) − u 0 | ≤ C t ⇒ No propagations of high oscillations with large amplitude : � x | u ε ( t , x ) − u 0 | ≤ ε C � u 0 ε ( x ) = u 0 ⇒ ε t Proof : y = x ε , s = t ε Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 9 / 33

  10. Propagations of high oscillations with small amplitude � x � u 0 ε ( x ) = ε u 0 ε q � x  � ε u 0 if q < 1 linear propagation ε q    t , x � � u ε ( t , x ) ≃ ε U if q = 1 nonlinear propagation ε   ε u 0 if q > 1 nonlinear smoothing effect  Critical exponent, q = 1 = α , R. Diperna, A. Majda, C.M.P ., 1985, U 2 ∂ U ∂ t + ∂ 2 = 0 , U ( 0 , θ ) = u 0 ( θ ) ∂θ t , x � � u ε ( t , x ) = ε U . ε Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 10 / 33

  11. Degenerate Nonlinear case p ≥ 2, a ( v ) = v p , α sup = 1 p < 1 � u 1 + p ∂ u ∂ t + ∂ � = 0 ∂ x 1 + p � x  � ε u 0 if q < p � x ε q  �  u 0 t , x � � ε ( x ) = ε u 0 ⇒ u ε ( t , x ) ≃ ε U if q = p ε q ε q  ε u 0 if q > p  Profile equation for critical exponent, q = p , U 1 + p ∂ U ∂ t + ∂ 1 + p = 0 , U ( 0 , θ ) = u 0 ( θ ) ∂θ t , x � � u ε ( t , x ) = ε U ε p Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 11 / 33

  12. Burgers 2D is not non-linear ∂ t u + ∂ x u 2 + ∂ y u 2 = 0 � x − y � u ( 0 , x , y ) = u 0 ε 2012 Panov : ξ = ( 1 , − 1 ) , F = ( u 2 , u 2 ) , ξ · F ( u ) ≡ 0 Lions-Perthame-Tadmor : ξ · F ′ ( v ) = ξ · a ( v ) ≡ 0, α sup = 0 Enguist-E : ξ · F ′′ ( v ) ≡ 0, stationary solutions without smoothing effect u ( t , x , y ) = u 0 ( x − y ) Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 12 / 33

  13. 2D genuine nonlinear example u 2 u 3 ∂ t u + ∂ x 2 + ∂ y = 0 3 � φ 0 ( x , y ) � u ( 0 , x , y ) = 0 + ε u 0 ε 2 Genuine nonlinear flux : a ( u ) = ( u , u 2 ) � a ′ ( u ) � 1 � � 2 u = a ′′ ( u ) 0 2 φ 0 ( x , y ) = x cancellations φ 0 ( x , y ) = y propagations : ( 0 , 1 ) = ∇ φ 0 ⊥ a ( u = 0 ) = ( 1 , 0 ) Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 13 / 33

  14. High frequency waves ∂ u ∂ t + ∇ x . F ( u ) = 0 � φ 0 ( x ) � u ( 0 , x ) = u + ε U 0 ε q φ 0 ( x ) = v · x Propagation : u ε ( t , x ) = u + ε U ( t , ε − q φ ( t , x )) + . . . 1 Cancellation u ε ( t , x ) = u + ε U + . . . 2 Chen,J, Rascle (JDE 06), multiphase : u ( 0 , x ) = u + ε U 0 ( ε − q 1 φ 1 ( x ) , · · · , ε − q d φ d ( x )) Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 14 / 33

  15. Propagation of smooth high oscillations Theorem q > 1 an integer, F ∈ C ∞ ( I R d ) , U 0 ∈ C 1 ( I R , I R / Z Z , I R ) , v � = ( 0 , · · · , 0 ) , d k a du k ( u ) � v = 0 , k = 1 , · · · , q − 1 (1) then ∃ T 0 > 0 such that, for all ε ∈ ] 0 , 1 ] , u ε smooth on [ 0 , T 0 ] × I R : � � t , φ ( t , x ) u ε ( t , x ) = u + ε U + O ( ε 2 ) in C 1 ([ 0 , T 0 ] × I R d ) , ε q ∂ t + b ∂ U q + 1 ∂ U = 0 , U ( 0 , θ ) = U 0 ( θ ) . ∂θ 1 a ( q ) ( u ) � v � � b = , φ ( t , x ) = v · ( x − t a ( u )) . ( q + 1 )! Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 15 / 33

  16. Proof : WKB expansions � � t , φ ( t , x ) u ε ( t , x ) = u + ε U ε , U ε ( 0 , θ ) = U 0 ( θ ) ε q Taylor expansions : v = ∇ φ � � t , φ ( t , x ) ∂ t U ε − ε − q ( a ( u ) · v ) ∂ θ U ε ∂ t U ε = ε q q ∂ θ U k + 1 1 � ε div x F ( u ε ) ( k + 1 )! a ( k ) ( u ) · v + ε q + 2 div x G ε = q ( U ε ) ε q − ( k + 1 ) k = 0 ε 1 − q ( a ( u ) · v ) ∂ θ U ε + ε b ∂ θ U q + 1 + ε 2 ∂ θ g ε = q ( U ε ) , ε Simplification and characteristics 0 = ∂ t u ε + div x F ( u ε ) � � ∂ t U ε + b ∂ θ U q + 1 + ε∂ θ g ε = ε q ( U ε ) . ε Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 16 / 33

  17. Uniform Sobolev bounds sequence bounded in L ∞ for 0 < ε ≤ 1 � t , φ ( t , x ) � u ε ( t , x ) = u + ε U + . . . ε q and if d d θ U 0 � = 0 a.e. there exists C > 0, 0 ≤ t ≤ T 0 1 C ≤ � u ε ( t , . ) � W s , 1 s = 1 R d ) ≤ C , q loc ( I q the Sobolev norm W s , 1 For s > 1 R d ) blows up. loc ( I Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 17 / 33

  18. Sobolev estimates 0 < s < 1 , � x d “ s ′′ ε � �� ε sq = ε 1 − sq ε V ∼ dx “ s ′′ ε q Upper bound : interpolation between L 1 and W 1 , 1 order ε 1 − q in W 1 , 1 order ε in L 1 loc loc order ε ( 1 − s ) 1 + s ( 1 − q ) in W s , 1 loc Lower bound : intrinsic semi-norm W s , p ( I R d ) � � | V ( x ) − V ( y ) | p dxdy | x − y | d + sp Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 18 / 33

  19. If the orthogonality condition : d k a du k ( u ) � v = 0 , k = 1 , · · · , q − 1 , is violated then Cancellation of high oscillations, Chen, J, Rascle, 06’ Let F belongs to C q + 1 and U 0 ∈ L ∞ ( I R / Z Z , I R ) , If for some 0 < j < q d j a du j ( u ) � v � = 0 then u ε ( t , x ) in L 1 R d ) . = u + ε U 0 + o ( ε ) loc (] 0 , + ∞ [ × I proof : compactness with kinetic formulation Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 19 / 33

  20. Sommaire Conjecture : Lions, Perthame, Tadmor 1994 1 High frequency waves 2 dimension d = 1 d>1 Sobolev estimates Characterization of Nonlinear Flux 3 Bound of the uniform maximal smoothing effect 4 Recent Works 5 Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 20 / 33

  21. Nonlinear flux Lax : d=1, f ′′ = a ′ � = 0 ⇐ ⇒ genuine nonlinear Tartar : d=1, not a linear function on any interval Engquist-E : independence of functions F ′′ 1 ( v ) , · · · , F ′′ d ( v ) Lions-Perthame-Tadmor : related to a ( v ) = F ′ ( v ) : α sup Panov : ∀ ξ � = 0 , ξ · F is non constant on any interval genuine nonlinearity condition for smooth multi-D flux F : det ( a ′ ( v ) , a ′′ ( v ) , · · · , a ( d ) ( v )) � = 0 everywhere Chen, J., Rascle 2006, Crippa ; Otto ; Westdickenberg 2008. Stéphane Junca (Nice) HYPERBOLIC PDE’s 2012 June 25 2012 21 / 33

Recommend


More recommend