hierarchical tensor representations
play

Hierarchical Tensor Representations R. Schneider (TUB Matheon) - PowerPoint PPT Presentation

Hierarchical Tensor Representations R. Schneider (TUB Matheon) Paris 2014 Acknowledgment DFG Priority program SPP 1324 Extraction of essential information from complex data Co-workers: T. Rohwedder (HUB), A. Uschmajev (EPFL Laussanne) W.


  1. Hierarchical Tensor Representations R. Schneider (TUB Matheon) Paris 2014

  2. Acknowledgment DFG Priority program SPP 1324 Extraction of essential information from complex data Co-workers: T. Rohwedder (HUB), A. Uschmajev (EPFL Laussanne) W. Hackbusch, B. Khoromskij, M. Espig (MPI Leipzig), I. Oseledets (Moscow) C. Lubich (T¨ ubingen), O. Legeza (Wigner I - Budapest), Vandereycken (Princeton), M. Bachmayr, L. Grasedyck (RWTH Aachen), ... J. Eisert (FU Berlin - Physics), F . Verstraete (U Wien), Z. Stojanac, H. Rauhhut Students: M. Pfeffer, S. Holtz ...

  3. I. High-dimensional problems

  4. PDE’s in R d , ( d >> 3) Equations describing complex systems with multi-variate solution spaces, e.g. ⊲ stationary/instationary Schr¨ odinger type equations i � ∂ ∂ t Ψ( t , x ) = ( − 1 2 ∆ + V ) Ψ( t , x ) , H Ψ( x ) = E Ψ( x ) � �� � H describing quantum-mechanical many particle systems ⊲ stochastic SDEs and the Fokker-Planck equation, d d ∂ 2 ∂ p ( t , x ) + 1 ∂ � � � � � � = f i ( t , x ) p ( t , x ) B i , j ( t , x ) p ( t , x ) ∂ t ∂ x i 2 ∂ x i ∂ x j i = 1 i , j = 1 describing mechanical systems in stochastic environment, x = (x 1 , . . . , x d ) , where usually, d >> 3! ⊲ parametric PDEs (arising in uncertainty quantification) e.g. ∇ x a ( x , y 1 , . . . , y d ) ∇ x u ( x , y 1 , . . . , y d ) = f ( x ) x ∈ Ω , y ∈ R d , + b.c. on ∂ Ω .

  5. Quantum physics - Fermions For a (discs.) Hamilton operator H and given h q p , g r , s p , q ∈ R , d d � � g p , q h q p a T r , s a T r a T H = p a q + s a p a q . p , q = 1 p , q , r , s = 1 the stationary (discrete) Schr¨ odinger equation is d � C 2 ≃ C ( 2 d ) . HU = E U , U ∈ j = 1 � 0 � 0 � 1 � � � 1 0 0 , A T = where A := S := , 0 0 1 0 0 − 1 and discrete annihilation operators a p ≃ a p := S ⊗ . . . ⊗ S ⊗ A ( p ) ⊗ I ⊗ . . . ⊗ I and creation operators a † p ≃ a T p := S ⊗ . . . ⊗ S ⊗ A T ( p ) ⊗ I ⊗ . . . ⊗ I

  6. Curse of dimensions For simplicity of presentation: discrete tensor product spaces � d = � d i = 1 R n i = R (Π d i = 1 n i ) H = H d := i = 1 V i , e.g.: V we consider tensors as multi-index arrays ( I i = 1 , . . . , n i ) � � U = x i = 1 ,..., n i , i = 1 ,..., d ∈ V , U x 1 , x 2 ,..., x d or equivalently functions of discrete variables ( K = R or C ) U : × d i = 1 I i → K , x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H , d = 1: n-tuples ( U x ) n � � x = 1 , or x �→ U [ x ] , or d = 2: matrices U x , y or ( x , y ) �→ U [ x , y ] . � If not specified otherwise, � . � = � ., . � denotes the ℓ 2 - norm. dim H d = O ( n d ) − − Curse of dimensionality! e.g. n = 100 , d = 10 � 100 10 basis functions, � coefficient vectors of 800 × 10 18 Bytes = 800 Exabytes n = 2, d = 500: then 2 500 >> the estimated number of atoms in the universe!

  7. Setting - Tensors of order d Goal: Problems posed on tensor spaces, � d = � d i = 1 R n = R ( n d ) H := i = 1 V i , e.g.: H Notation: x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H For simplicity we will consider only the Hilbert spaces ℓ 2 ( I ) ! Main problem: dim V = O ( n d ) − − Curse of dimensionality! e.g. n = 100 , d = 10 � 100 10 basis functions, � coefficient vectors of 800 × 10 18 Bytes = 800 Exabytes Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities. As for matrices, incomplete SVD: r � � � A [ x 1 , x 2 ] ≈ σ k u k [ x 1 ] ⊗ v k [ x 2 ] k = 1

  8. Setting - Tensors of order d Goal: Problems posed on tensor spaces, � d = � d i = 1 R n = R ( n d ) H := i = 1 V i , e.g.: H Notation: x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H For simplicity we will consider only the Hilbert spaces ℓ 2 ( I ) ! Main problem: dim V = O ( n d ) − − Curse of dimensionality! e.g. n = 100 , d = 10 � 100 10 basis functions, � coefficient vectors of 800 × 10 18 Bytes = 800 Exabytes Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities. As for matrices, incomplete SVD: r � � � A [ x 1 , x 2 ] ≈ σ k u k [ x 1 ] ⊗ v k [ x 2 ] k = 1

  9. Setting - Tensors of order d Goal: Problems posed on tensor spaces, � d = � d i = 1 R n = R ( n d ) H := i = 1 V i , e.g.: H Notation: x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H For simplicity we will consider only the Hilbert spaces ℓ 2 ( I ) ! Main problem: dim V = O ( n d ) − − Curse of dimensionality! e.g. n = 100 , d = 10 � 100 10 basis functions, � coefficient vectors of 800 × 10 18 Bytes = 800 Exabytes Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities. � Canonical decomposition for order- d -tensors: r � � � ⊗ d i = 1 u i [ x i , k ] U [ x 1 , . . . , x d ] ≈ . k = 1

  10. I. Subspace approximation and novel tensor formats B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} U {1,2,3} (Format � representation closed under linear algebra manipulations)

  11. Subspace approximation d = 2 Let F : K → V , y �→ F y ∈ V and K be compact. (Provided it make sense,) the Kolmogorov r -width is d r , ∞ ( F ) := sup y ∈K inf f y ∈ U � F y − f y � inf { U : dim U ≤ r , U ⊂ V } � � � 1 inf f y ∈ U � F y − f y � 2 dy d r , 2 ( F ) := inf 2 { U : dim U ≤ r , U ⊂ V } K Theorem (E. Schmidt (07)) V := R n 1 , K := { 1 . . . , n 2 } , ( x , y ) → F y ( x ) := U [ x , y ] ∈ R n 1 × n 2 , then the best approximation in the library of all subspaces of dimension at most r is provided by the singular value decomposition (SVD, Schmidt decomposition) and d r , 2 ( F ) = inf � U − V � { V ∈ U 1 ⊗ U 2 : U 1 ⊂ R n 1 , U 2 ⊂ R n 2 ; dim U 1 ≤ r }

  12. Tucker decomposition - sub-space approximation We are seeking subspaces U i ⊂ V i fitting best to a given tensor X ∈ � d i = 1 V i , in the sense � X − U � 2 := inf { V ∈ U 1 ⊗···⊗ U d : dim U i ≤ r i } � X − V � 2 i.e we are minimizing over subspaces U i ∈ G ( V i , r i ) , G ( V , r ) := { U ⊂ V subspace : dim U = r } Grasmannian U i = span { b i k i : k i = r i } ⊂ V i , rank tuple r = ( r 1 , . . . , r d ) . C [ k 1 , . . . , k d ] = � U , b 1 k 1 ⊗ · · · ⊗ b d ⇒ k d � core tensor r d r 1 d � � � b i U [ x 1 , .., x d ] = . . . C [ k 1 , .., k d ] k i [ x i ] k 1 = 1 k d = 1 i = 1

  13. Subspace approximation

  14. Subspace approximation ⊲ Tucker format (MCSCF, MCTDH(F)) - robust But complexity O ( r d + ndr ) Is there a robust tensor format, but polynomial in d ? � � r i Univariate bases x i �→ U i [ k i , x i ] k i = 1 ( → Graßmann man.) r 1 r d d � � � U i [ k i , x i ] U [ x 1 , .., x d ] = . . . B [ k 1 , .., k d ] k 1 = 1 k d = 1 i = 1 {1,2,3,4,5} 1 2 3 4 5

  15. Subspace approximation ⊲ Tucker format (MCSCF, MCTDH(F)) - robust But complexity O ( r d + ndr ) Is there a robust tensor format, but polynomial in d ? ⊲ Hierarchical Tucker format (HT; Hackbusch/K¨ uhn, Grasedyck, Meyer et al., Thoss & Wang, Tree-tensor networks) ⊲ Tensor Train (TT-)format ≃ Matrix product states (MPS) r d − 1 r 1 d � � � B i [ k i − 1 , x i , k i ] = B 1 [ x 1 ] · · · B d [ x d ] U [ x ] = . . . k 1 = 1 k d − 1 = 1 i = 1 {1,2,3,4,5} {1} {2,3,4,5} U 1 U 2 U 3 U 4 U 5 r 1 r 2 r 3 r 4 {2} {3,4,5} n 1 n 2 n 3 n 4 n 5 {3} {4,5} {4} {5}

  16. Hierarchical tensor (HT) format ⊲ Canonical decomposition ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

  17. Hierarchical tensor (HT) format ⊲ Canonical decomposition not closed, no embedded manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

  18. Hierarchical tensor (HT) format ⊲ Canonical decomposition not closed, no embedded manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

  19. Hierarchical tensor (HT) format ⊲ Canonical decomposition not closed, no embedded manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

  20. Hierarchical tensor (HT) format ⊲ Canonical decomposition not closed, no embedded manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

  21. Hierarchical tensor (HT) format ⊲ Canonical decomposition not closed, no embedded manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} U {1,2,3} (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

  22. Hierarchical tensor (HT) format ⊲ Canonical decomposition not closed, no embedded manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} U {1,2,3} (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )

Recommend


More recommend