helmet optimisation based on head helmet modelling deck c
play

Helmet optimisation based on head-helmet modelling Deck C., - PowerPoint PPT Presentation

Helmet optimisation based on head-helmet modelling Deck C., Baumgartner B., Willinger R. Universit Louis Pasteur Strasbourg-France : IMFS UMR 7507 ULP-CNRS willi@imfs.u-strasbg.fr International Motorcycle Safety Confernce The Human


  1. Helmet optimisation based on head-helmet modelling Deck C., Baumgartner B., Willinger R. Université Louis Pasteur –Strasbourg-France : IMFS – UMR 7507 ULP-CNRS willi@imfs.u-strasbg.fr International Motorcycle Safety Confernce The Human Element Long Beach CA : 28-30 March 2006

  2. Presentation Overview • Introduction • ULP-Strasbourg Head FE model Presentation • Improved head injury criteria • Helmet modeling and coupling with the head • Helmet optimization • Conclusion

  3. INTRODUCTION • One of the most frequent and severe injuring in almost all types of accidents • Standards ? Upon criteria based on research performed more than 30 years ago • Injury potential is assessed against HIC based on the linear acceleration of a single mass • Helmet optimisation against biomechanical criteria is possible

  4. j y g all motorcyclists n = 270 Importance of motorcyclist’s head 66.7 26.7 (from COST 327) 57.0 54.8 30.7 21.9 72.9 MAIS 1 MAIS 3 + MAIS 2 80 % n = 69 n = 144 n = 53 37.7 81.3 67.9 13.0 38.9 13.2 27.5 76.4 47.2 42.0 67.4 41.5 5.8 51.4 9.4 11.6 28.5 17.0 66.7 79.9 66.0

  5. Hybrid III Head Model M = 4.58 kg ⎡ ⎤ 2 .5 t 1 ∫ 2 = − ⎢ ⎥ H I C ( t t ) a d t ⎣ ⎦ 2 1 − ( t t ) t 2 1 1

  6. 1998 1992 Human Head Modelling at ULP- Strasboug 1994 1990

  7. Skull meshing FE MODEL BUILDING FE model building Rebuilt skull surfaces

  8. Meshing of the brain MEMBRANES AND BRAIN Faulx and tentorium

  9. CSF ANF FACE MODELLING Face Brain and CSF

  10. MECHANICAL PROPERTIES OF FE MODEL COMPONENTS ρ [ kg/m3] E [Mpa] σ t [Mpa] σ c [Mpa] K [Mpa] G 0 [Kpa] G inf [Kpa] β [m/s] ν structure cortical bone 15000 0,21 90 145 spongy bone 1500 4500 0 35 35 CSF 1040 0,012 0,49 brain 1040 1125 49 16,7 0,14 skin 1200 16,7 0,42 membranes 1140 31,5 0,23

  11. FE MODEL VALIDATION AGAINST DIFFERENT IMPACT CONFIGURATIONS Impactor LA RA Impact Impactor Force Duration velocity maxi maxi Test area [kg] [N] [ms] [m/s] [g] [rad/s²] cylinder with padding Nahum 1977 front 6,3 6900 198 6,5 [5,6] Trosseille 1992 steering wheel face 7 102 7602 15,8 MS 428_2 [23,4] Yogonandan rigid sphere vertex 7,3 10500 2 1994 [1,213] Brain motion validation agains Hardy’s Impacts (2001)

  12. Against Improved injury criteria

  13. Atempts for new tolerance Limits • FE head modelling and accident simulation Zhou et al. - 96, Kang et al. - 97, Newman et al. – 99 King et al. 2003 • Experimental accident reconstruction Chinn et al. - 99, Willinger et al. - 2000 • Animal models Ommaya et al. - 67, Ruan et al. - 94, Zhou et al. - 94, Anderson et al. - 99

  14. Head Injury Mechanisms Brain Interface Skull Contusion EDH SDH DAI Fracture

  15. Injury mechanisms and mechanical parameters Skull fracture Bone loading Extradural Heamatoma Bone loading Subdural Heamatoma Brain-skull relative motion Focal brain Contusion Local brain loading Diffuse brain axonal or heamorragic injury Brain loading

  16. ACCIDENT RECONSTRUCTION Real world head impact simulation - Motorcyclist accident (13) - Sport accidents (22 ) - Pedestrian accidents (29)

  17. medical reports Indeep analyses of Detailed accidents COST 327 ACCIDENT DATA WORKING GROUP

  18. Experimental accident accident replication replication Experimental Model inputs – Helmeted american footballers Experimental accident replication Validation parameters Measured dummy head Rigid skull applied velocity acceleration field field

  19. Analytical accident accident replication replication Analytical Model inputs – Knocked down pedestrians Analytical accident replication Validation parameters Accident data Windscreen damages Head superficial wounds Initial relative angular position and velocity between the head and the windscreen

  20. Brain Von mises stress NUMERICAL RESULTS (2) - CASE field at 9 ms G174 Brain pressure field at 5 ms

  21. ULP injury injury prediction prediction Assesment Assesment ULP Sub-dural and sub-arachnoidal haematoma – Histograms Global strain energy of the sub-arachnoidal space Threshold ~ 5000 mJ

  22. ULP injury injury prediction prediction Assesment Assesment ULP Sub-dural and subarachnoidal haematoma – Risk curve Global strain energy of the sub-arachnoidal space Risk 50 % ~ 4995 mJ

  23. ULP injury injury prediction prediction Assesment Assesment ULP Moderate neurological injuries – Histograms Intra-cerebral Von Mises stress Threshold ~ 20 kPa

  24. ULP injury injury prediction prediction Assesment Assesment ULP Moderate neurological injuries – Risk curve Intra-cerebral Von Mises stress Risk 50 % ~ 18.5 kPa

  25. ULP injury injury prediction prediction Assesment Assesment ULP Severe neurological injuries – Histograms Intra-cerebral Von Mises stress Threshold ~ 40 kPa

  26. ULP injury injury prediction prediction Assesment Assesment ULP Severe neurological injuries – Risk curve Intra-cerebral Von Mises stress Risk 50 % ~ 35.4 kPa

  27. ULP injury injury prediction prediction Assesment Assesment ULP Skull bones fractures – Histograms Global strain energy of the skull Threshold ~ 2500 mJ

  28. ULP injury injury prediction prediction Assesment Assesment ULP Skull bones fractures – Risk curve Global strain energy of the skull Risk 50 % ~ 2531 mJ

  29. Recall ULP ULP Criteria Criteria Recall New head injurie criteria to specific injury mechanisms Sub-arachnoidal haematoma Global strain energy of the sub-arachnoidal space > 5 J Moderate neurological injuries Intra-cerebral Von Mises stress > 18 kPa Severe neurological injuries Intra-cerebral Von Mises stress > 38 kPa skull fractures Global strain energy of the skull > 2.5 J

  30. HELMET MODELLING HELMET MODELLING

  31. Literature review 1 Load Paths 2 Load Paths Striker / Anvil M 1 1 2 Striker / Anvil K 1 C 1 Liner Shell Shell M 2 Yield Liner K 2 C 2 Comfort Foam Liner M 3 K 3 C 3 HeadForm Headform M 4 Mills et al. (1988) Yetram et al. (1994) Guimberteau et al. (1998) Vetter et al. (1987) Brands et al. (1996)

  32. Meshing Extrusion for foam modelling External surface Outer Shell Foam External surface Outer Shell Foam of the Helmet (524 Shell elements) (1675 Brick elements) of the Helmet (524 Shell elements) (1675 Brick elements) Thickness 4mm Thickness 40 mm Thickness 4mm Thickness 40 mm

  33. Mechanical properties Foam compression tests 2 1,8 1,6 ( ) + ⎧ ⎫ ⎡ ⎤ 10 m/s v v 1 + 1,4 t 1 t * Stress [N/mm²] ⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎣ ⎦ 2 f Contrainte [Mpa] ε = ε + 1,2 ⎨ ⎬ 6 m/s + t 1 t e ⎪ ⎪ 1 ⎪ ⎪ ⎩ ⎭ 0,8 0,6 0,4 0,2 γ m t σ = 0 t s 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Strain Déformation

  34. Mechanical properties Mechanical properties ρ ν Component Material Model E [GPa] Comment [kg/m3] Thermo- linear- Outer shell 1,5 0,35 1055 Thickness = 4mm plastic elastic Protective Expanded elasto- Thickness = 40mm 1,5.e-3 0,05 25 padding polystyrene plastic Yield stress = 0,35MPa Headform aluminium rigid 27 0,3 _ Mass = 4,27 kG

  35. Model Validation (1) Model Validation (1) V=7.5 m/s Headform (2208 nodes ; 1652 elements) Head acceleration < 270g ⎡ ⎤ 2.5 t 1 2 ∫ Front impact = − ⎢ ⎥ HIC ( t t ) adt < 2400 ⎣ ⎦ 2 1 − ( t t ) t 2 1 1

  36. Model Validation (2) Model Validation (2) 9000 8000 7000 Exp Sim 6000 Force [N] 5000 4000 3000 2000 1000 0 -5 0 5 10 Depla 2000 1800 1600 1400 Acceleration [m/s2] 1200 1000 800 600 400 200 V=7.5 m/s 0 0 2 4 6 Te

  37. Validation at P Point

  38. Coupling of of the the helmet helmet Coupling with with the human human head head model model the

  39. Human head head model model coupled coupled to to the the helmet helmet FE FE model model Human Front Impact Regulation ECE R022 Impact speed 7.5 m/s

  40. Results in in terms terms of of intra intra- -cerebral cerebral parameters parameters Results Von Mises Pressure � Tolerance � Tolerance � limite � limite Coup : 350 Kpa Maximum Von Mises : 31 KPa Contre-coup : -90 KPa

  41. Parametric study study Parametric

  42. Parametric study study Parametric Values Parameters - + A Young modulus of the foam 1.05 MPa 1.95 MPa B Shell thickness 2.8 mm 5.2 mm C Young modulus of the shell 10.5 GPa 19.5 GPa D Foam elastic limit 0.21 MPa 0.455 MPa S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 A - + - + - + - + - + - + - + - + B - - + + - - + + - - + + - - + + C - - - - + + + + - - - - + + + + D - - - - - - - - + + + + + + + + Mechanical characteristics of the 16 virtual helmets : +/- represents ± 30% of reference value.

  43. Results in in terms terms of of HIC HIC and and Max Max Acc Acc Results All virtual helmets present HIC < 2400 Max Acceleration < 270g foam yield stress HIC

Recommend


More recommend