hadron spectroscopy at jefferson lab
play

Hadron spectroscopy at Jefferson Lab M.Battaglieri INFN -GE Italy - PowerPoint PPT Presentation

GSI - May 9 2018 EMMI Hadron Physics Seminar Hadron spectroscopy at Jefferson Lab M.Battaglieri INFN -GE Italy 1 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab Jefferson Lab Primary Beam: Electrons Beam Energy: 12


  1. GSI - May 9 2018 EMMI Hadron Physics Seminar Hadron spectroscopy at Jefferson Lab M.Battaglieri INFN -GE Italy 1 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  2. Jefferson Lab ✴ Primary Beam: Electrons ✴ Beam Energy: 12 GeV • 10 > λ > 0.1 fm 
 nucleon → quark transition 
 baryon and meson excited states ✴ 100% Duty Factor (cw) Beam • coincidence experiments • Four simultaneous Beams with Independently Variable Energy and Intensity • complementary, long experiments ✴ Polarization (beam and reaction products) • spin degrees of freedom • weak neutral currents L > 10 7 x SLAC at the time of the original DIS experiments! 2 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  3. Jefferson Lab at 12 GeV add Hall D (and beam line) Upgrade magnets and power supplies GLUEX CHL-2 Enhance equipment in Beam Power: 1MW existing halls Beam Current: 90 µA Max Pass energy: 2.2 GeV Max Enery Hall A-C: 10.9 GeV CLAS12 Max Energy Hall D: 12 GeV 3 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  4. Beyond the quark model: hybrids and exotics Quarks are confined inside colorless hadrons 
 they combine to 'neutralize' color force q q q q q mesons baryons Observed mesons and baryons well described by 1 st principles QCD Science (2008) 4 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  5. The light quark meson spectrum Constituent Quark Model Consider light • Quark-antiquark pairs with total spin S=0,1 quarks: 
 and orbital angular momentum L u,d,s S 1 S=S 1 +S 2 J= L+S L P = (-1) L+1 C= (-1) L+S S 2 Not all the J PC combinations are allowed: ¡ 0 ++ 0 +- 0 -+ 0 -- 1 ++ 1 +- 1 -+ 1 -- 2 ++ 2 +- 2 -+ 2 -- 3 ++ 3 +- 3 -+ 3 -- … • SU(3) flavor symmetry → nonet (8 ⨁ 1) of degenerate states J PC = 0 -+ ⇒ ( π ,K, η , η ’) 1 -- ⇒ ( ρ ,K*, ω , Φ ) 1 +- ⇒ (b 1 ,K 1 ,h 1 ,h 1 ’) ... - • Great success in describing the lower mass states (qq angular momentum) L = 0 1 2 3 4 5 • A number of predicted states is not experimentally observed and assignments are uncertain 5 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  6. The gluons and the meson spectrum • Understanding gluonic excitations of mesons and the origin of confinement • At high energy experimental evidence is found in jet production regular meson • At lower energies the hadron spectrum carries information about the gluons that bind quarks tetraquarks • Can we find hints of the glue in the meson spectrum? Exotic nonets Search for non-standard states with explicit gluonic degrees of glueball freedom Not-allowed J PC = 0 -- , 0 +- , 1 -+ , 2 +- ... hybrid q q Unambiguous experimental signature for the presence of gluonic degrees of freedom in - the spectrum of mesonic states (qq angular momentum) hybrid mesons L = 0 1 2 3 4 5 one of the most important issue in hadron physics and main motivation for the JLab 12 GeV upgrade 6 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  7. Lattice QCD calculations 1 -- • in blue: overlap with J PC =1 -+ operator • interpreted as • qq in S-wave + J gPgCg =1 +- in P-wave • Interpretation in term of CQM + Standard Gluon field Exotics mesons • Dependence on Lattice size • Dependence on ρ Pion mass = 700 MeV pion mass J.Dudek et al Phys.Rev.D82 (2010) 034508 J.Dudek et al., Phys. Rev. D84, 074023 (2011) 7 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  8. The CLAS12 physics program 8 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  9. Why photoproduction ★ Photoproduction: exotic J PC are more likely produced by S=1 probe Need spin-flip for exotic quantum number No spin-flip for exotic quantum number A. Afanasev and P . Page et al. PR A57 1998 6771 A. Szczepaniak and M. Swat PLB 516 2001 72 ★ Linear polarization acts like a filter to disentangle the regular mesons @ E g = 5GeV X = a 2 production mechanisms and suppress bg Exotic meson @ E g = 8GeV ★ Production rate for exotics is expected comparable as X = p 1 (1600) for regular mesons 9 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  10. Meson spectroscopy with photons at JLab-12GeV Coherent tagged Bremsstrahlung in Hall D Performance (0.5 - 0.95) E beam → 6 < Eg < 11 GeV (10MeV resolution) Photon Flux ~ 10 7 - 10 8 g/s 30cm LH target → L ~ 10 31 cm -2 s -1 Linear pol ~ 50% - 15% (collective) photons out electrons out diamond crystal Well established technique: electrons in Hall-B polarized photon beam 10 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  11. Meson spectroscopy with photons at JLab-12GeV Coherent tagged Bremsstrahlung in Hall D Performance (0.5 - 0.95) E beam → 6 < Eg < 11 GeV (10MeV resolution) Photon Flux ~ 10 7 - 10 8 g/s 30cm LH target → L ~ 10 31 cm -2 s -1 Linear pol ~ 50% - 15% (collective) photons out electrons out diamond crystal Well established technique: electrons in Hall-B polarized photon beam 11 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  12. Quasi-real photoproduction with CLAS12 (Low Q 2 electron scattering) Forward Tagger ★ Electron scattering at “0” degrees (2.5 O - 4.5 O ) e’ CLAS12 ➤ ¡ low Q 2 virtual photon ⇔ real photon g v e ★ Photon tagged by detecting the scattered electron at low angles N ➤ ¡ High energy photons 6.5 < E g < 10.5 GeV ★ Quasi-real photons are linearly polarized ➤ ¡ Polarization ~ 70% - 10% (measured event-by-event) ★ High Luminosity (unique opportunity to run thin gas target!) ➤ ¡ Equivalent photon flux N γ ~ 5 10 8 on 5cm H 2 (L=10 35 cm -2 s -1 ) ★ Multiparticle hadronic states detected in CLAS12 ➤ ¡ High resolution and excellent PID (kaon identification) Complementary to Hall-D (GLUEX) 12 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  13. The Forward Tagger and CLAS12 The CLAS12 detector The FT installed in CLAS12 FT-Cal: PbWO 4 calorimeter electron energy/momentum Photon energy ( ν =E-E') Polarization ε -1 ≈ 1 + ν 2 /2EE’ INFN-GE, INFN-RM2, INFN-TO, JLab FT-Hodo: Scintillator tiles veto for photons EdinburghU+JMU+NSU+Jlab FT-Trck: MicroMegas electron angles and polarization plane Saclay + OhioU+Jlab 13 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  14. Meson spectroscopy with photons at JLab-12 GeV • Determination of JPC of meson states requires PWA • Decay and production of exclusive reactions • Good acceptance, energy resolution, particle identification • Good hermeticity Hall-D - GlueX Detector • Uniform acceptance Hall-B - CLAS12 Detector • Limited resolution • Limited pID • Good resolution • Good pID • Reasonable hermeticity • Un-uniform acceptance 14 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  15. From the data to the spectrum: Partial Wave Analysis • ¡Parametrize ¡the ¡cross ¡sec/on ¡ Exo%c ¡state ¡ γ in ¡term ¡of ¡par/al ¡waves ¡ J PC • ¡ Fit ¡ to ¡ data ¡ to ¡ extract ¡ amplitudes ¡ • ¡ A ¡ model ¡ is ¡ needed ¡ to ¡ parametrize ¡amplitudes: ¡Isobar ¡ p p Model, ¡Dispersion ¡Rela/ons, ¡… Step2: extract resonance parameters Step1: decompose to PW 15 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  16. Early Physics ɣ p →π 0 p 1.4 Σ (a) • Beam asymmetry Σ provides insight into 0 p p γ → π 1.2 dominant production mechanism 1 2.6% Norm. Uncert. 0.8 P h y s . 0.6 R e v . F C i r 9 s 5 t , G 0 L 4 U 2 0.4 2 • Understanding production mechanism E 0 X 1 ( p R u GlueX 8.4<E <9.0 GeV ) b l i γ c a t critical to disentangling J PC of observed i o 0.2 n ! SLAC E =10 GeV γ states in exotic hybrid search 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 t 2 -t (GeV/ c ) • Preliminary studies are already showing interesting features ɣ p → 4 γ p • Preliminary studies are already showing interesting features • Previous photoproduction data very sparse for channels with multiple neutrals particles 16 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  17. Some selected results form CLAS6 MB, R.DeVita A. Szczpaniak et al Phys.Rev.Lett. 102:102001,2009 MB, R.DeVita A. Szczpaniak et al Phys.Rev. D80:072005,2009 γ p → p π π M( π + π − ) spectrum below 1.5 GeV: • P-wave: ρ meson • D-wave: f 2 (1270) • S-wave: σ , f 0 (980) and f 0 (1320) First observation of the f 0 (980) in a photoproduction experiment M.Battaglieri - INFN GE 17 Hadron Spectroscopy at CLAS and CLAS12 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

  18. the follow-up … Y 00 Y 11 Y γ p → p k k R A • S.Lombardo (IU/Cornell) N • Full analysis from g11 CLAS6 data set I M • S-P interference in 2k system I L Method: E R Y 20 Y 10 • Extract moments from data P • Parametrise amplitudes with a model: P-wave: pomeron, s-wave: rho, omg t-exch • Fit moments to obtain PW cross sections L. Bibrzycki, L. Lesniak, A. P . Szczepaniak Acta Phys.Polon. B36 (2005) 3889-3896 P-wave S-wave Y R S-wave A N I M I L S-wave cross section E M KK range R P-wave 1.0195±0:0225 GeV P M KK range P-wave cross section 1.0195±0:0225 GeV 2k amplitudes provided by JPAC 18 M.Battaglieri - INFN GE Hadron spectroscopy at Jefferson Lab

Recommend


More recommend