gravitational lensing
play

GRAVITATIONAL LENSING LESSON 1 - DEFLECTION OF LIGHT Massimo - PowerPoint PPT Presentation

GRAVITATIONAL LENSING LESSON 1 - DEFLECTION OF LIGHT Massimo Meneghetti AA 2016-2017 TEACHER Massimo Meneghetti Researcher INAF - Osservatorio Astronomico di Bologna Ufficio: 2S5 (Via Ranzani) - 4W3 (navile) e-mail:


  1. GRAVITATIONAL LENSING LESSON 1 - DEFLECTION OF LIGHT Massimo Meneghetti AA 2016-2017

  2. TEACHER Massimo Meneghetti Researcher INAF - Osservatorio Astronomico di Bologna Ufficio: 2S5 (Via Ranzani) - 4W3 (navile) e-mail: massimo.meneghetti@oabo.inaf.it ricevimento: da concordare via e-mail o telefono google group: https://groups.google.com/d/forum/gravlens_2017

  3. THE COURSE ➤ module 1: Basics of Gravitational Lensing Theory ➤ Applications of Gravitational Lensing: ➤ module 2: microlensing in the MW ➤ module 3: lensing by galaxies ➤ module 4: lensing by galaxy clusters ➤ module 5: lensing by the LSS ➤ Python ➤ Final exam

  4. LEARNING RESOURCES ➤ http://pico.bo.astro.it/~massimo/teaching.html ➤ available materials: ➤ lecture scripts, articles, tutorials, links to external material and books ➤ slides ➤ python notebooks

  5. CONTENTS OF TODAY’S LESSON ➤ Deflection of light in the Newtonian limit ➤ Gravitational lensing in the context of general relativity ➤ The deflection angle

  6. DEFLECTION OF A LIGHT CORPUSCLE ➤ Assumptions: ➤ photons have an inertial gravitational mass ➤ photons propagate at speed of light ➤ Newton’s law of gravity ➤ Newton’s principle of equivalence

  7. DEFLECTION OF A LIGHT CORPUSCLE m = p c x = ct d ~ p ~ = F dt = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 r 2 = x 2 + ( a − y ) 2

  8. DEFLECTION OF A LIGHT CORPUSCLE d ~ p ~ = F dt = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  9. DEFLECTION OF A LIGHT CORPUSCLE d ~ p ~ = F dt = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  10. DEFLECTION OF A LIGHT CORPUSCLE d ~ p ~ = F dt = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  11. DEFLECTION OF A LIGHT CORPUSCLE d ~ p ~ = F dt = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  12. DEFLECTION OF A LIGHT CORPUSCLE d ~ p ~ = F dt = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  13. DEFLECTION OF A LIGHT CORPUSCLE d ~ p cos θ = x ~ = F dt r = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  14. DEFLECTION OF A LIGHT CORPUSCLE d ~ p cos θ = x ~ = F dt r = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  15. DEFLECTION OF A LIGHT CORPUSCLE d ~ p cos θ = x ~ = F dt r = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) cos θ sin θ = a − y r F x = dp x GMp dt = c ( x 2 + ( a − y ) 2 ) sin θ

  16. DEFLECTION OF A LIGHT CORPUSCLE d ~ p cos θ = x ~ = F dt r = | F | (cos ✓ , sin ✓ ) GMm = (cos ✓ , sin ✓ ) r 2 F x = dp x dt = GMp x ( x 2 + ( a − y ) 2 ) 3 / 2 c sin θ = a − y r F y = dp y dt = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c

  17. DEFLECTION OF A LIGHT CORPUSCLE x = ct dx = cdt dp i dt = dp i dx dt = cdp i dx dx dp x dx = GMp x ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 dp y dx = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c 2

  18. DEFLECTION OF A LIGHT CORPUSCLE dp x dx = GMp x ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 Z + ∞ GMp x = ∆ p x ( x + ( a − y ) 2 ) 3 / 2 dx c 2 −∞ GMp log[( a − y ) 2 + x 2 ] ⇤ + ∞ ⇥ = c 2 −∞ = 0

  19. DEFLECTION OF A LIGHT CORPUSCLE dp y dx = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 Z + ∞ GMp a − y = ∆ p y ( x + ( a − y ) 2 ) 3 / 2 dx c 2 −∞ � + ∞  GMp x tan − 1 = c 2 a − y −∞ 2 GMp 1 = c 2 a − y

  20. DEFLECTION OF A LIGHT CORPUSCLE dp y dx = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 Z + ∞ GMp a − y = ∆ p y ( x + ( a − y ) 2 ) 3 / 2 dx c 2 −∞ � + ∞  GMp x tan − 1 = c 2 a − y −∞ 2 GMp 1 = c 2 a − y

  21. DEFLECTION OF A LIGHT CORPUSCLE dp y dx = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 Z + ∞ GMp a − y = ∆ p y ( x + ( a − y ) 2 ) 3 / 2 dx c 2 −∞ � + ∞  GMp x tan − 1 = c 2 a − y −∞ 2 GMp 1 = c 2 a − y

  22. DEFLECTION OF A LIGHT CORPUSCLE dp y dx = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 Z + ∞ GMp a − y = ∆ p y ( x + ( a − y ) 2 ) 3 / 2 dx c 2 −∞ � + ∞  GMp x tan − 1 = c 2 a − y −∞ 2 GMp 1 = c 2 a − y

  23. DEFLECTION OF A LIGHT CORPUSCLE dp y dx = GMp a − y ( x 2 + ( a − y ) 2 ) 3 / 2 c 2 Z + ∞ GMp a − y = ∆ p y ( x + ( a − y ) 2 ) 3 / 2 dx c 2 −∞ � + ∞  GMp x tan − 1 = c 2 a − y −∞ 2 GMp 1 = c 2 a − y ψ = ∆ p y = 2 GM 1 c 2 p a − y

  24. DEFLECTION OF A LIGHT CORPUSCLE BY THE SUN a − y = R � M = M � = 1 . 989 × 10 30 kg a − y = R � = 6 . 96 × 10 8 m ψ ≈ 0 . 875”

  25. DEFLECTION OF A LIGHT CORPUSCLE BY THE SUN a − y = R � M = M � = 1 . 989 × 10 30 kg a − y = R � = 6 . 96 × 10 8 m ψ ≈ 0 . 875” ψ = ∆ p y = 2 GM 1 c 2 p a − y

  26. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  27. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  28. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  29. DEFLECTION OF LIGHT IN GENERAL RELATIVITY ➤ We will now repeat the calculation of the deflection angle in the context of a locally curved space-time ➤ Assumptions: ➤ the deflection occurs in small region of the universe and over time-scales where the expansion of the universe is not relevant ➤ the weak-field limit can be safely applied: | Φ | /c 2 ⌧ 1 ➤ perturbed region can be described in terms of an e ff ective di ff raction index ➤ Fermat principle

  30. DEFLECTION OF LIGHT IN GENERAL RELATIVITY n = c/c 0 > 1

  31. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Travel time= Z B Fermat principle: δ ndl = 0 A

  32. DEFLECTION OF LIGHT IN GENERAL RELATIVITY How to define the effective diffraction index? absence of lens = unperturbed space-time described by the Minkowski metric effective diffraction index >1 = perturbed space-time, described by the perturbed metric

  33. SCHWARZSCHILD METRIC (STATIC AND SPHERICALLY SYMMETRIC) ◆ − 1 ✓ 1 − 2 GM ◆ ✓ 1 − 2 GM ds 2 = dR 2 − R 2 (sin 2 θ d φ 2 + d θ 2 ) c 2 dt 2 − Rc 2 Rc 2 x = r sin θ cos φ r 1 + 2 GM y = r sin θ sin φ R = rc 2 r z = r cos φ dl 2 = [ dr 2 + r 2 (sin 2 θ d φ 2 + d θ 2 )]

  34. SCHWARZSCHILD METRIC IN THE WEAK FIELD LIMIT

  35. DEFLECTION OF LIGHT IN GENERAL RELATIVITY How to define the effective diffraction index?

  36. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  37. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle

  38. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle

  39. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle

  40. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle generalized coordinate

  41. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle generalized velocity generalized coordinate

  42. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle generalized velocity generalized coordinate

  43. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle generalized velocity generalized coordinate Langrangian!

  44. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle Euler-Langrange equation:

  45. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle Euler-Langrange equation:

  46. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle Euler-Langrange equation:

  47. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle Euler-Langrange equation:

  48. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Let’s use the Fermat principle Euler-Langrange equation:

  49. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  50. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  51. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  52. DEFLECTION OF LIGHT IN GENERAL RELATIVITY

  53. DEFLECTION OF LIGHT IN GENERAL RELATIVITY Deflection angle

  54. DEFLECTION OF LIGHT IN GENERAL RELATIVITY As it is written, this equation is not useful, as we would have to integrate over the actual light path. Let’s assume that the deflection is small. We can integrate the potential along the unperturbed path (Born approximation):

  55. A PARTICULAR CASE: THE POINT MASS

  56. A LIGHT RAY GRAZING THE SURFACE OF THE SUN General relativity: Newtonian gravity and corpuscolar light: The reason for the factor of 2 difference is that both the space and time coordinates are bent in the vicinity of massive objects — it is four- dimensional space–time which is bent by the Sun.

Recommend


More recommend