grammatical inference and subregular phonology
play

Grammatical inference and subregular phonology Adam Jardine - PowerPoint PPT Presentation

Grammatical inference and subregular phonology Adam Jardine Rutgers University December 11, 2019 Tel Aviv University Review Outline of course Day 1: Learning, languages, and grammars Day 2: Learning strictly local grammars Day 3:


  1. Grammatical inference and subregular phonology Adam Jardine Rutgers University December 11, 2019 · Tel Aviv University

  2. Review

  3. Outline of course • Day 1: Learning, languages, and grammars • Day 2: Learning strictly local grammars • Day 3: Automata and input strictly local functions • Day 4: Learning functions and stochastic patterns, other open questions 2

  4. Review of days 1 & 2 • Phonological patterns are governed by restrictive computational universals • We studied one such universal of strict locality 3

  5. Review of days 1 & 2 • We studied learning SL languages under the paradigm of identification in the limit from positive data t p ( t ) L ⋆ 0 abab 1 ababab 2 ab A G i . . . . . . p [ i ] i λ . . . . . . 4

  6. Today • Learning with finite-state automata for – strictly local languages – input-strictly local functions 5

  7. Strictly local acceptors

  8. Strictly local acceptors Engelfriet & Hoogeboom, 2001 “It is always a pleasant surprise when two formalisms, intro- duced with different motivations, turn out to be equally pow- erful, as this indicates that the underlying concept is a natural one.” (p. 216) 6

  9. Strictly local acceptors • A finite-state acceptor (FSA) is a set of states and transitions between states b b a 0 1 a 7

  10. Strictly local acceptors b b a 0 1 a a b b a 8

  11. Strictly local acceptors b b a 0 1 a a b b a 0 → 1 8

  12. Strictly local acceptors b b a 0 1 a a b b a 0 → 1 → 1 8

  13. Strictly local acceptors b b a 0 1 a a b b a 0 → 1 → 1 → 1 8

  14. Strictly local acceptors b b a 0 1 a a b b a 0 → 1 → 1 → 1 → 0 8

  15. Strictly local acceptors b b a 0 1 a a b b a 0 → 1 → 1 → 1 → 0 � 8

  16. Strictly local acceptors b b a 0 1 a b a a b b a 9

  17. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 9

  18. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 → 1 9

  19. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 → 1 → 0 9

  20. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 → 1 → 0 → 0 9

  21. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 → 1 → 0 → 0 → 0 9

  22. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 → 1 → 0 → 0 → 0 → 1 9

  23. Strictly local acceptors b b a 0 1 a b a a b b a 0 → 0 → 1 → 0 → 0 → 0 → 1 ✗ 9

  24. Strictly local acceptors • A SL k FSA ’s states represent the k − 1 factors of Σ ∗ b b a b 0 1 0 1 a a Not SL k for any k SL 2 ; 0 = b , 1 = a 10

  25. Strictly local acceptors • Traversing a SL k FSA is equivalent to scanning for k factors b a b a ⋊ a b a b ⋉ 11

  26. Strictly local acceptors • Traversing a SL k FSA is equivalent to scanning for k factors b a b a ⋊ a b a b ⋉ 11

  27. Strictly local acceptors • Traversing a SL k FSA is equivalent to scanning for k factors b a b a ⋊ a b a b ⋉ 11

  28. Strictly local acceptors • Traversing a SL k FSA is equivalent to scanning for k factors b a b a ⋊ a b a b ⋉ 11

  29. Strictly local acceptors • Traversing a SL k FSA is equivalent to scanning for k factors b a b a ⋊ a b a b ⋉ 11

  30. Strictly local acceptors • Traversing a SL k FSA is equivalent to scanning for k factors b a b a ⋊ a b a b ⋉ 11

  31. Strictly local acceptors • Forbidden k -factors are expressed by missing transitions/accepting states b a b a ⋊ a b b ⋉ ✗ 12

  32. Strictly local acceptors • SLFSAs describe exactly the SL languages • Thus, they capture the same concept of locality as SL grammars, but in a different way 13

  33. Learning with strictly local acceptors

  34. Learning with strictly local acceptors • Finite-state automata are useful because they have a number of learning techniques (de la Higuera, 2010) • We’ll use a ‘transition filling’ of Heinz and Rogers (2013) 14

  35. Learning with strictly local acceptors b a a 0 1 b 15

  36. Learning with strictly local acceptors ⊥ ⊥ b : ⊥ ⊥ a : ⊥ ⊥ ⊤ a : ⊤ ⊤ 0 : ⊥ ⊥ ⊥ 1 : ⊤ ⊤ ⊤ ⊤ b : ⊤ ⊤ • output function Q × Σ → {⊤ , ⊥} • ending function Q → {⊤ , ⊥} 15

  37. Learning with strictly local acceptors C : ⊥ C : ⊥ C : ⊥ V : ⊥ C : ⊥ ⋊ : ⊥ V : ⊥ V : ⊥ V : ⊥ Learning procedure: • Start with ‘empty’ SL k FSA • Change ⊥ transitions to ⊤ when traversed by input data 16

  38. Learning with strictly local acceptors data C : ⊥ 0 CV C : ⊥ C : ⊥ V : ⊥ C : ⊥ ⋊ : ⊥ V : ⊥ V : ⊥ V : ⊥ Learning procedure: • Start with ‘empty’ SL k FSA • Change ⊥ transitions to ⊤ when traversed by input data 16

  39. Learning with strictly local acceptors data C : ⊥ 0 CV C : ⊥ C : ⊤ V : ⊤ C : ⊥ ⋊ : ⊥ V : ⊤ V : ⊥ V : ⊥ Learning procedure: • Start with ‘empty’ SL k FSA • Change ⊥ transitions to ⊤ when traversed by input data 16

  40. Learning with strictly local acceptors data C : ⊥ 0 CV 1 V C : ⊥ C : ⊤ V : ⊤ C : ⊥ ⋊ : ⊥ V : ⊤ V : ⊥ V : ⊤ Learning procedure: • Start with ‘empty’ SL k FSA • Change ⊥ transitions to ⊤ when traversed by input data 16

  41. Learning with strictly local acceptors data C : ⊥ 0 CV 1 V C : ⊥ C : ⊤ V : ⊤ 2 CV CV C : ⊤ ⋊ : ⊥ V : ⊤ V : ⊥ V : ⊤ Learning procedure: • Start with ‘empty’ SL k FSA • Change ⊥ transitions to ⊤ when traversed by input data 16

  42. Learning with strictly local acceptors data C : ⊥ 0 CV 1 V C : ⊥ C : ⊤ V : ⊤ 2 CV CV C : ⊤ ⋊ : ⊥ V : ⊤ V : ⊥ V : ⊤ Learning procedure: • Start with ‘empty’ SL k FSA • Change ⊥ transitions to ⊤ when traversed by input data 16

  43. Learning with strictly local acceptors C : ⊥ C : ⊥ C : ⊥ V : ⊥ C : ⊥ ⋊ : ⊥ V : ⊥ V : ⊥ V : ⊥ • Any SL 2 language can be described by varying {⊤ , ⊥} on this structure 17

  44. Learning with strictly local acceptors C : ⊥ C : ⊤ C : ⊤ V : ⊤ C : ⊤ ⋊ : ⊥ V : ⊤ V : ⊤ V : ⊤ • Any SL 2 language can be described by varying {⊤ , ⊥} on this structure 17

  45. Learning with strictly local acceptors C : ⊥ C : ⊥ C : ⊤ V : ⊤ C : ⊤ ⋊ : ⊥ V : ⊤ V : ⊥ V : ⊤ • Any SL 2 language can be described by varying {⊤ , ⊥} on this structure 17

  46. Learning with strictly local acceptors C : ⊥ C : ⊥ CC : ⊥ V : ⊥ C : ⊥ C : ⊥ C : ⊥ CV : ⊥ V : ⊥ ⋊ : ⊥ V : ⊥ C : ⊥ C : ⊥ V C : ⊥ V : ⊥ V : ⊥ C : ⊥ V : ⊥ V V : ⊥ V : ⊥ V : ⊥ • Any SL 3 language can be described by this structure 18

  47. Learning with strictly local acceptors • This procedure ILPD-learns any SL k language for a given k • It is distinct, yet based on the same notion of locality 19

  48. Input strictly local functions

  49. Input strictly local functions • Generative phonology is primarily interested in maps /kam-pa/ → [kamba] /kam-pa/ F aith *NC ˇ ID (voi) /kam-pa/ *! C → [+ voi ] / N [kampa] b *! [kama] [kamba] * ☞ [kamba] 20

  50. Input strictly local functions • Maps are (functional) relations /NC / → [NC ˇ ] ˚ { ( an , an ), ( anda , anda ), ( anta , anda ), ( lalalalampa , lalalalamba ),... } • We can study classes of relations like we studied classes of formal languages 21

  51. Input strictly local functions • Johnson (1972); Kaplan and Kay (1994): phonological maps are regular memory memory length of w length of w regular non-regular • Regular functions � = regular languages! 22

  52. Input strictly local functions computable functions Reg • How do we extend strict locality to functions? 23

  53. Input strictly local functions computable functions Subseq Reg • How do we extend strict locality to functions? • Phonological maps are subsequential ... (Mohri, 1997; Heinz and Lai, 2013, et seq.) 23

  54. Subsequential transducers ⊥ ⊥ b : ⊥ ⊥ a : ⊥ ⊥ ⊤ a : ⊤ ⊤ 0 : ⊥ ⊥ ⊥ 1 : ⊤ ⊤ ⊤ ⊤ b : ⊤ ⊤ Deterministic acceptor: • output function Q × Σ → {⊤ , ⊥} • ending function Q → {⊤ , ⊥} 24

  55. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c Subsequential transducer: • output function Q × Σ → Γ ∗ • ending function Q → Γ ∗ 24

  56. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c b a b b 25

  57. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c b a b b 0 → 0 b 25

  58. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c b a b b 0 → 0 → 1 b a 25

  59. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c b a b b 0 → 0 → 1 → 0 b a c 25

  60. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c b a b b 0 → 0 → 1 → 0 → 0 b a c b 25

  61. Subsequential transducers a : a b : b a : a 0 : d 1 : λ b : c b a b b 0 → 0 → 1 → 0 → 0 b a c b d 25

  62. Subsequential transducers Let’s do some examples... 26

Recommend


More recommend