gradient flows in the framework of cartesian currents
play

Gradient flows in the framework of (Cartesian) Currents Malte - PowerPoint PPT Presentation

Gradient flows in the framework of (Cartesian) Currents Malte Kampschulte Department for Mathematics I, RWTH Aachen University Conference on Nonlinearity, Transport, Physics and Patterns Fields Institute 07.10.2014 Vortices as singularities


  1. Gradient flows in the framework of (Cartesian) Currents Malte Kampschulte Department for Mathematics I, RWTH Aachen University Conference on Nonlinearity, Transport, Physics and Patterns Fields Institute 07.10.2014

  2. Vortices as singularities Consider functions m : Ω ⊂ R 2 → S 2 What happens if we penalize the third component? Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 2 / 14

  3. Vortices as singularities Consider functions m : Ω ⊂ R 2 → S 2 What happens if we penalize the third component? Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 2 / 14

  4. Vortices as singularities Consider functions m : Ω ⊂ R 2 → S 2 What happens if we penalize the third component? ◮ Enforces planar values m ( x ) ∈ S 1 × { 0 } a.e. Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 2 / 14

  5. Vortices as singularities Consider functions m : Ω ⊂ R 2 → S 2 What happens if we penalize the third component? ◮ Enforces planar values m ( x ) ∈ S 1 × { 0 } a.e. ◮ ⇒ Vortices form, can behave similar to point particles. Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 2 / 14

  6. Vortices as singularities Consider functions m : Ω ⊂ R 2 → S 2 What happens if we penalize the third component? ◮ Enforces planar values m ( x ) ∈ S 1 × { 0 } a.e. ◮ ⇒ Vortices form, can behave similar to point particles. ◮ Information about orientation is lost! Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 2 / 14

  7. Vortices as singularities Consider functions m : Ω ⊂ R 2 → S 2 What happens if we penalize the third component? ◮ Enforces planar values m ( x ) ∈ S 1 × { 0 } a.e. ◮ ⇒ Vortices form, can behave similar to point particles. ◮ Information about orientation is lost! Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 2 / 14

  8. Bubbling and Vertical parts Seen in the simpler case [ a , b ] → S 1 , information in the limit still exists in vertical parts: Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 3 / 14

  9. Bubbling and Vertical parts Seen in the simpler case [ a , b ] → S 1 , information in the limit still exists in vertical parts: Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 3 / 14

  10. Bubbling and Vertical parts Seen in the simpler case [ a , b ] → S 1 , information in the limit still exists in vertical parts: Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 3 / 14

  11. Bubbling and Vertical parts Seen in the simpler case [ a , b ] → S 1 , information in the limit still exists in vertical parts: Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 3 / 14

  12. Bubbling and Vertical parts Seen in the simpler case [ a , b ] → S 1 , information in the limit still exists in vertical parts: Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 3 / 14

  13. Bubbling and Vertical parts Seen in the simpler case [ a , b ] → S 1 , information in the limit still exists in vertical parts: Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 3 / 14

  14. Cartesian currents Approach due to Giaquinta, Modica, Souˇ cek (’89): ◮ Consider graphs of (nice enough) functions Ω ⊂ R n → M as rectifiable n -current in Ω × M . ◮ Cartesian Currents ≈ closure the class of graphs in the topology of currents Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 4 / 14

  15. Cartesian currents Approach due to Giaquinta, Modica, Souˇ cek (’89): ◮ Consider graphs of (nice enough) functions Ω ⊂ R n → M as rectifiable n -current in Ω × M . ◮ Cartesian Currents ≈ closure the class of graphs in the topology of currents Reminder (de Rham (’55), Federer & Fleming (’60)): ◮ k -Currents ≈ dual space of compactly supported smooth differential k -forms (approach similar to distributions) ◮ Rectifiable k -currents ≈ countable unions of orientable manifolds with integer multiplicity Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 4 / 14

  16. Cartesian currents Approach due to Giaquinta, Modica, Souˇ cek (’89): ◮ Consider graphs of (nice enough) functions Ω ⊂ R n → M as rectifiable n -current in Ω × M . ◮ Cartesian Currents ≈ closure the class of graphs in the topology of currents Some features: ◮ Cartesian Currents usually consist of flat “graph” part and “vertical” singularities ◮ Cart. Currents are boundaryless (boundary in ∂ (Ω × M ) does not count) Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 4 / 14

  17. Why gradient flows ◮ Large class of similar problems ◮ Many have some sort of singularities ◮ Canonical example: Harmonic map heat flow ◮ Good abstract approach available (s. book by Ambrosio, Gigli, Savar´ e) Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 5 / 14

  18. Minimizing movements (de Giorgi) Ingredients ◮ Set of admissible Currents A ◮ Metric d ( ., . ) ◮ Energy E ( . ) Implicit Euler iteration � 1 � � � 2 S ( h ) � S , S ( h ) � k +1 := arg min 2 hd + E ( S ) � S ∈ A . � k Then for h → 0 the limit S ( t ) = lim h → 0 S ( h ) k / h should converge to a solution to the gradient flow ∂ ∂ t S + ∇ d E ( S ) = 0 Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 6 / 14

  19. Convergence theorem (K. 2014) Assume we have some closed class of cartesian currents A for which i) d 2 and E lower semi-continuous ii) E bounded from below iii) The mass of currents with bounded energy is bounded ˙ iv) F ( S − T ) ≤ c · d ( S , T ) for some c and all S , T of bounded energy Then the minimizing movements iteration is well defined and converges (up to a subsequence) on any time interval [0 , τ ] to an k + 1 space-time current A s.t. the approximations S ( h ) ( r ) converge to the slices � A , t < r � . Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 7 / 14

  20. Convergence theorem (K. 2014) Assume we have some closed class of cartesian currents A for which i) d 2 and E lower semi-continuous ii) E bounded from below iii) The mass of currents with bounded energy is bounded ˙ iv) F ( S − T ) ≤ c · d ( S , T ) for some c and all S , T of bounded energy Then the minimizing movements iteration is well defined and converges (up to a subsequence) on any time interval [0 , τ ] to an k + 1 space-time current A s.t. the approximations S ( h ) ( r ) converge to the slices � A , t < r � . Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 7 / 14

  21. Convergence theorem (K. 2014) Assume we have some closed class of cartesian currents A for which i) d 2 and E lower semi-continuous ii) E bounded from below iii) The mass of currents with bounded energy is bounded ˙ iv) F ( S − T ) ≤ c · d ( S , T ) for some c and all S , T of bounded energy Then the minimizing movements iteration is well defined and converges (up to a subsequence) on any time interval [0 , τ ] to an k + 1 space-time current A s.t. the approximations S ( h ) ( r ) converge to the slices � A , t < r � . Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 7 / 14

  22. The boundary free case: a homogeneous Flat norm Reminder: Flat norm F ( S − T ) := sup { ( S − T )( ω ) : � ω � ≤ 1 ∧ � d ω � ≤ 1 } = inf { M ( A ) + M ( B ) : S − T = ∂ A + B } Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 8 / 14

  23. The boundary free case: a homogeneous Flat norm Reminder: Flat norm F ( S − T ) := sup { ( S − T )( ω ) : � ω � ≤ 1 ∧ � d ω � ≤ 1 } = inf { M ( A ) + M ( B ) : S − T = ∂ A + B } Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 8 / 14

  24. The boundary free case: a homogeneous Flat norm Reminder: Flat norm F ( S − T ) := sup { ( S − T )( ω ) : � ω � ≤ 1 ∧ � d ω � ≤ 1 } = inf { M ( A ) + M ( B ) : S − T = ∂ A + B } Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 8 / 14

  25. The boundary free case: a homogeneous Flat norm Reminder: Flat norm F ( S − T ) := sup { ( S − T )( ω ) : � ω � ≤ 1 ∧ � d ω � ≤ 1 } = inf { M ( A ) + M ( B ) : S − T = ∂ A + B } Variant: Homogeneous flat norm ˙ F ( S − T ) := sup { ( S − T )( ω ) : � d ω � ≤ 1 } = inf { M ( A ) : S − T = ∂ A } Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 8 / 14

  26. The boundary free case: a homogeneous Flat norm Reminder: Flat norm F ( S − T ) := sup { ( S − T )( ω ) : � ω � ≤ 1 ∧ � d ω � ≤ 1 } = inf { M ( A ) + M ( B ) : S − T = ∂ A + B } Variant: Homogeneous flat norm ˙ F ( S − T ) := sup { ( S − T )( ω ) : � d ω � ≤ 1 } = inf { M ( A ) : S − T = ∂ A } ˙ Preserves boundary and topology, i.e. F ( S − T ) is infinite for topologically different currents, suitable for Cartesian Currents. Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 8 / 14

  27. Sketch of proof Malte Kampschulte (RWTH Aachen) Gradient flows in Cartesian Currents 07.10.2014 9 / 14

Recommend


More recommend