gr bner bases applications in cryptology
play

Grbner Bases. Applications in Cryptology Algorithms Buchberger and - PowerPoint PPT Presentation

Grbner - Crypto J.-C. Faugre Plan Grbner bases: properties Zero dim solve Grbner Bases. Applications in Cryptology Algorithms Buchberger and Macaulay Ecient Algorithms F 5 algorithm Jean-Charles Faugre Complexity result


  1. Gröbner - Crypto Degree 3 IV x 3 x 2 2 y 3 x 2 z J.-C. Faugère y x y z 3 f 0 0 0 0 1 Plan f 2 f 4 y 3 f 0 1 1 8 1 9 0 Gröbner bases: properties x 3 f 1 1 8 1 9 0 8 f 1 f 5 Zero dim solve z 2 f 0 0 0 0 3 Algorithms y 2 f 0 3 7 8 0 Buchberger and Macaulay x 2 f 3 7 8 0 2 2 E¢cient Algorithms F 5 algorithm z 1 f 0 0 0 0 6 Complexity result y 1 f 0 6 1 2 4 0 x 1 f 6 1 2 4 0 1 4

  2. Gröbner - Crypto Degree 3 V J.-C. Faugère x 3 x 2 2 y 3 x 2 2 2 y 2 z 3 y x y z x y z y z x z z z 3 f 0 0 0 0 1 1 8 1 9 8 5 7 Plan y 3 f 0 1 1 8 1 9 0 8 5 0 7 0 Gröbner bases: properties x 3 f 1 1 8 1 9 0 8 5 0 7 0 0 Zero dim solve z 4 f 0 0 0 0 0 1 3 2 4 2 2 Algorithms y 4 f 0 0 1 3 0 2 4 0 2 2 0 Buchberger and Macaulay x 4 f 0 1 3 0 2 4 0 2 2 0 0 E¢cient Algorithms f F 5 algorithm A 3 = z 5 f 0 0 0 0 0 0 1 1 2 2 0 1 8 Complexity result y 5 f 0 0 0 1 0 1 2 2 0 0 1 8 0 x 5 f 0 0 1 0 1 2 2 0 0 1 8 0 0 We have constructed 3 new polynomials f 6 = y 3 + 8 y 2 z + xz 2 + 18 yz 2 + 15 z 3 f 7 = xz 2 + 11 yz 2 + 13 z 3 f 8 = yz 2 + 18 z 3 We have the linear equivalences: x f 2 $ x f 4 $ f 6 and f 4 � ! f 2

  3. Gröbner - Crypto Degree 4: reduction to 0 ! J.-C. Faugère Plan Gröbner bases: properties Zero dim solve Algorithms The matrix whose rows are Buchberger and Macaulay E¢cient Algorithms F 5 algorithm x 2 f i , x yf i , y 2 f i , x zf i , y zf i , z 2 f i , i = 1 , 2 , 3 Complexity result is not full rank !

  4. Gröbner - Crypto Why ? J.-C. Faugère Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay 6 � 3 = 18 rows E¢cient Algorithms but only x 4 , x 3 y , . . . , y z 3 , z 4 15 columns F 5 algorithm Complexity result Simple linear algebra theorem: 3 useless row (which ones ?)

  5. Gröbner - Crypto Trivial relations J.-C. Faugère Plan Gröbner bases: properties f 2 f 3 � f 3 f 2 = 0 Zero dim solve Algorithms Buchberger and Macaulay can be rewritten E¢cient Algorithms F 5 algorithm 3 x 2 f 3 + ( 7 + b ) xy f 3 + 8 y 2 f 3 + 22 xz f 3 Complexity result + 11 yz f 3 + 22 z 2 f 3 � x 2 f 2 � 18 xy f 2 � 19 y 2 f 2 � 8 xz f 2 � 5 yz f 2 � 7 z 2 f 2 = 0 We can remove the row x 2 f 2 ! remove x 2 f 1 same way f 1 f 3 � f 3 f 1 = 0 � ! remove x 2 f 1 ! but f 1 f 2 � f 2 f 1 = 0 � ???

  6. Gröbner - Crypto Combining trivial relations J.-C. Faugère Plan Gröbner bases: properties 0 = ( f 2 f 1 � f 1 f 2 ) � 3 ( f 3 f 1 � f 1 f 3 ) Zero dim solve = ( f 2 � 3 f 3 ) f 1 � f 1 f 2 + 3 f 1 f 3 0 Algorithms 0 = f 4 f 1 � f 1 f 2 + 3 f 1 f 3 Buchberger and � ( 1 � b ) xy + 4 yz + 2 xz + 3 y 2 � z 2 � Macaulay E¢cient Algorithms 0 = f 1 F 5 algorithm � ( 6 x 2 + � � � ) f 2 + 3 ( 6 x 2 + � � � ) f 3 Complexity result I if b 6 = 1 remove x y f 1 I if b = 1 remove y z f 1 Need “some” computation

  7. Gröbner - Crypto New Criterion J.-C. Faugère Any combination of the trivial relations f i f j = f j f i can Plan always be written: Gröbner bases: properties u ( f 2 f 1 � f 1 f 2 ) + v ( f 3 f 1 � f 1 f 3 ) + w ( f 2 f 3 � f 3 f 2 ) Zero dim solve Algorithms Buchberger and where u , v , w are arbitrary polynomials. Macaulay E¢cient Algorithms F 5 algorithm ( u f 2 + v f 3 ) f 1 � uf 1 f 2 � vf 1 f 3 + wf 2 f 3 � wf 3 f 2 Complexity result (trivial) relation hf 1 + � � � = 0 $ h 2 Id ( f 2 , f 3 ) Compute a Gröbner basis of ( f 2 , f 3 ) � ! G prev . Remove line h f 1 i¤ LT ( h ) top reducible by G prev

  8. Gröbner - Crypto Degree 4 I J.-C. Faugère Plan Gröbner bases: properties y 2 f 1 , x zf 1 , y zf 1 , z 2 f 1 , x yf 2 , y 2 f 2 , x zf 2 , Zero dim solve y zf 2 , z 2 f 2 , x 2 f 3 , x yf 3 , y 2 f 3 , x zf 3 , y zf 3 , z 2 f 3 Algorithms Buchberger and Macaulay E¢cient Algorithms F 5 algorithm In order to use previous computations (degree 2 and 3): Complexity result xf 2 ! f 6 f 2 ! f 4 xf 1 ! f 8 yf 1 ! f 7 f 1 ! f 5 yf 7 , zf 8 , zf 7 , z 2 f 5 , yf 6 , y 2 f 4 , zf 6 , y zf 4 , z 2 f 4 , x 2 f 3 , x yf 3 , y 2 f 3 , x zf 3 , y zf 3 , z 2 f 3 ,

  9. Gröbner - Crypto Degree 4 II J.-C. Faugère Plan 1 18 19 0 0 8 5 0 0 7 0 0 0 0 0 Gröbner bases: 1 18 19 0 0 8 5 0 0 7 0 0 0 0 properties 1 18 19 0 0 8 5 0 0 7 0 0 0 Zero dim solve 1 3 0 0 2 4 0 0 22 0 0 0 Algorithms Buchberger and 1 0 0 0 8 0 1 18 0 15 0 Macaulay E¢cient Algorithms 1 18 19 0 8 5 0 7 0 0 F 5 algorithm 1 18 19 0 8 5 0 7 0 Complexity result 1 3 0 2 4 0 22 0 1 0 0 8 1 18 1 5 1 18 19 8 5 7 1 11 0 13 0 1 12 20 1 8 1 11 1 3 1 1 8 1 3 2 4 2 2

  10. Gröbner - Crypto Degree 4 III J.-C. Faugère Plan Gröbner bases: properties Zero dim solve 2 y 2 z 2 x 3 y 3 z 4 x y z z z Algorithms Buchberger and z 2 f 4 Macaulay 1 3 2 4 2 2 E¢cient Algorithms Sub matrix: z 2 f 5 1 1 2 2 0 1 8 F 5 algorithm Complexity result z 7 f 1 1 1 1 3 z 8 f 1 1 8 y 7 f 1 1 1 0 1 3 0

  11. Gröbner - Crypto New algorithm J.-C. Faugère Plan Gröbner bases: properties I Incremental algorithm Zero dim solve Algorithms ( f ) + G old Buchberger and Macaulay E¢cient Algorithms F 5 algorithm Complexity result I Incremental degree by degree I Give a “unique name” to each row Remove h f 1 + � � � if LT ( h ) 2 LT ( G old ) LT ( h ) signature/index of the row

  12. Gröbner - Crypto F 5 matrix J.-C. Faugère Plan Gröbner bases: properties Special/Simpler version of F 5 for dense/generic Zero dim solve polynomials. Algorithms Buchberger and the maximal degree D is a parameter of the algorithm. Macaulay E¢cient Algorithms degree d m = 2, deg ( f i ) = 2 homogeneous quadratic F 5 algorithm Complexity result polynomials, degree d : We may assume that we have already computed: G i , d Gröbner basis [ f 1 , . . . , f i ] up do degree d

  13. Gröbner - Crypto In degree d J.-C. Faugère Plan Gröbner bases: properties Zero dim solve m 1 m 2 m 3 m 4 m 5 Algorithms u 1 f 1 1 x x x x Buchberger and u 2 f 1 0 1 x x x Macaulay E¢cient Algorithms u 3 f 1 0 0 1 x x F 5 algorithm v 1 f 2 0 0 0 1 x Complexity result v 2 f 2 0 0 0 0 1 w 1 f 3 0 0 0 0 0 w 2 f 3 0 0 0 0 0 . . . . . 0 0 0 0 0 . with deg ( u i ) = deg ( v i ) = deg ( w i ) = d � 2

  14. Gröbner - Crypto From degree d to d + 1 I J.-C. Faugère Plan Gröbner bases: properties Select a row in degree d : Zero dim solve Algorithms Buchberger and m 1 m 2 m 3 m 4 m 5 Macaulay E¢cient Algorithms . F 5 algorithm . . 0 1 x x x Complexity result v 1 f 2 0 0 0 1 x v 2 f 2 0 0 0 0 1 0 0 0 0 0 w 1 f 3 w 2 f 3 0 0 0 0 0

  15. Gröbner - Crypto From degree d to d + 1 II J.-C. Faugère Plan Gröbner bases: properties m 1 m 2 m 3 m 4 m 5 . Zero dim solve . . 0 1 x x x Algorithms v 1 f 2 0 0 0 1 x t 1 t 2 t 3 t 4 t 5 Buchberger and Macaulay v 2 f 2 0 0 0 0 1 . . E¢cient Algorithms . F 5 algorithm 0 0 0 0 0 w 1 f 3 w 1 x j f 3 0 1 x x x Complexity result w 1 x j 1 f 3 0 0 1 x x w 2 f 3 0 0 0 0 0 w 1 x n f 3 0 0 0 1 x . . . j x 1 w 1 x i f 1 j

  16. Gröbner - Crypto From degree d to d + 1 III J.-C. Faugère Plan Gröbner bases: properties m 1 m 2 m 3 m 4 m 5 Zero dim solve . . t 1 t 2 t 3 t 4 t 5 . 0 1 x x x Algorithms . v 1 f 2 0 0 0 1 x . Buchberger and . Macaulay v 2 f 2 0 0 0 0 1 w 1 x j f 3 0 1 x x x E¢cient Algorithms F 5 algorithm w 1 x j 1 f 3 0 0 1 x x w 1 f 3 0 0 0 0 0 Complexity result w 1 x n f 3 0 0 0 1 x 0 0 0 0 0 w 2 f 3 . . . K e e p w 1 x i f 3 i f f w 1 x i L T f 1 f 2 j i f x 1 w 1 x 1 j

  17. Gröbner - Crypto From degree d to d + 1 IV J.-C. Faugère Plan Gröbner bases: properties m 1 m 2 m 3 m 4 m 5 . Zero dim solve . t 1 t 2 t 3 t 4 t 5 . 0 1 x x x . Algorithms . v 1 f 2 0 0 0 1 x . Buchberger and v 2 f 2 0 0 0 0 1 Macaulay w 1 x j f 3 0 1 x x x E¢cient Algorithms w 1 x j 1 f 3 0 0 1 x x w 1 f 3 0 0 0 0 0 F 5 algorithm w 1 x n f 3 0 0 0 1 x Complexity result w 2 f 3 0 0 0 0 0 . . . K e e p w 1 x i f 3 i f f w i x i n o t r e d u c i b l e b y L T G 2 d 2 i f x 1 j w 1 x 1 j

  18. Gröbner - Crypto F 5 properties J.-C. Faugère Plan Gröbner bases: properties Full version of F 5 : D the maximal degree is not given . Zero dim solve Theorem If F = [ f 1 , . . . , f m ] is a (semi) regular sequence Algorithms then all the matrices are full rank. Buchberger and Macaulay E¢cient Algorithms I F 5 algorithm Easy to adapt for the special case of F 2 ( new trivial Complexity result syzygy: f 2 i = f i ). I Incremental in degree/equations (swap 2 loops) I Fast in general (but not always) I F 5 matrix: easy to implement, used in applications (HFE).

  19. Gröbner - Crypto Classi…cation I J.-C. Faugère Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E¢cient Algorithms (with M. Bardet, B. Salvy) F 5 algorithm Complexity result Theorem

  20. Gröbner - Crypto Classi…cation II J.-C. Faugère Pour une suite semi-régulière ( f 1 , . . . , f m ) , il n’y a pas de Plan réduction à 0 dans l’algorithme F 5 en degré inférieur à son Gröbner bases: degré de régularité d reg ; de plus d reg est le degré en z du properties premier coe¢cient négatif de la série: Zero dim solve Algorithms � 1 � ( 1 � δ K , F 2 ) z d i � � 1 � δ K , F 2 z 2 � n m Buchberger and Macaulay ∏ E¢cient Algorithms 1 + δ K , F 2 z d i 1 � z F 5 algorithm i = 1 Complexity result où d i est le degré total de f i . Par conséquent, le nombre total d’opérations arithmétiques dans K nécessaire à F 5 (voir algorithme ?? ) est borné par Cste � M d reg ( n ) ω with ω � 3 On considère une suite semi-régulière constituée d’équations ( f 1 , . . . , f m ) . Le tableau suivant résume le résultat de

  21. Gröbner - Crypto Classi…cation III J.-C. Faugère plusieurs théorèmes donne le développement asymptotique Plan de d reg lorsque n ! ∞ en fonction de la valeur du rapport Gröbner bases: entre le nombre d’équations et le nombre de variables m properties n . Zero dim solve Légende des symboles utilisés dans le tableau: Algorithms k est une constante (qui ne dépend pas de n ). Buchberger and Macaulay d i est le degré total de f i . E¢cient Algorithms F 5 algorithm H k ( X ) est le k ème polynôme d’Hermite; h k , 1 est le plus Complexity result grand zéro de H k (tous les zéros de H k ( X ) sont réels). a 1 � � 2 . 3381 est le plus grand zéro de la fonction d’Airy (solution de ∂ 2 y ∂ z 2 � z y = 0). � � ( 1 � z ) n m Φ ( z ) = z ∂ ( 1 � z d i ) � 1 = ∂ z log ∏ n i = 1 m d i z di 1 � z � 1 z 1 � z di et z 0 est la racine de Φ 0 ( z ) qui minimise ∑ n i = 1 Φ ( z 0 ) > 0.

  22. Gröbner - Crypto Classi…cation IV J.-C. Faugère m Degré d reg Plan Gröbner bases: m < n K , d i = 2 m + 1 (Macaulay bound) properties n + 1 d i � 1 Zero dim solve n + 1 K ∑ (A. Szanto) 2 p m Algorithms i = 1 m n + k K , d i = 2 2 � h k , 1 2 + o ( 1 ) Buchberger and s Macaulay E¢cient Algorithms n + k n + k F 5 algorithm d 2 i � 1 d i � 1 n + k K ∑ � h k , 1 ∑ + o ( 1 ) Complexity result 2 6 i = 1 i = 1 � � 3 � 1 . 47 + 1 . 71 n � 1 1 n � 2 n 3 + O 2 n K , d i = 2 11 . 6569 + 1 . 04 n 3 p 1 ( k � 1 � a 1 3 + O ( 1 ) k n K , d i = 2 2 � k ( k � 1 )) n + 6 n 1 2 ( k ( k � 1 )) � � � � 1 � 1 3 + O 1 2 Φ 00 ( z 0 ) z 2 Φ ( z 0 ) n � a 1 k n K n 3 0 3 � 1 . 58 + O ( n � 1 1 n 3 ) n F 2 , d i = 2 11 . 1360 + 1 . 0034 n � q p � k + 1 2 + 1 k n F 2 , d i = 2 2 k ( k � 5 ) � 1 + 2 ( k + 2 ) k ( k + 2 ) 2

  23. Fast Gröbner algorithms overdetermined systems Jean-Charles Faug` ere CNRS - Universit´ e Paris 6 - INRIA SPIRAL (LIP6) – SALSA Project Samos 2007 Samos – 2007 – p. 1

  24. Why do we need efficiency ? Users have problems that they want to solve. Hot topic in Cryptography (L. Perret). The goal is to evaluate the security of a cryptosystem. Should be resistant to: differential cryptanalysts linear cryptanalysis Algebraic Cryptanalysis Samos – 2007 – p. 2

  25. Algebraic cryptanalysis Convert the crypto-system algebraic � problem. Evaluate the difficulty of the corresponding algebraic system S. n ✂ ✝ ✞ ✟ V z ☎ f z 0 f S ✄ ✄ ✁ ✁ 2 ✆ To solve S: compute Gröbner bases. Samos – 2007 – p. 3

  26. Algebraic cryptanalysis Convert the crypto-system algebraic � problem. Evaluate the difficulty of the corresponding algebraic system S. n ✂ ✝ ✞ ✟ V z ☎ f z 0 f S ✄ ✄ ✁ ✁ 2 ✆ To solve S: compute Gröbner bases. exaustive search !! n 2 n Complexity of exaustive O ✝ ✞ n 80 � Samos – 2007 – p. 3

  27. Specific problems F n ✂ ✝ ✞ ✟ V z f i z 0 i 1 m ✄ ✁ ✁ ✁ � 2 ✆ ✆ ✆ ✁ ✁ ✁ ✆ 2 In fact we have to add the “field equations”: x 2 x i . � i x 2 ✝ ✝ ✞ ✞ ✝ ✞ Ideal f i z 0 i 1 m x i i 1 n ✁ ✁ ✁ i � ✆ ✆ ✁ ✁ ✁ ✆ ✆ ✆ ✁ ✁ ✁ ✆ Hence we have M n equations in n m ✁ variables. Sometimes m n . � � Samos – 2007 – p. 4

  28. Specific solutions For several applications (Signal Theory, Crypto, . . . ) we have to solve an overdertimed system of equations. Improve algorithms for overdertimed systems. Improve complexity bound (Macaulay bound). Samos – 2007 – p. 5

  29. Specific algorithm in Crypto From “outside” the perception of Gröbner bases is (often) bad: n 10 complexity. d 2 Very inefficient implementation of Gröbner bases in general CAS. Results on Complexity are not well known. develop new algorithms for solving algebraic � equations. Samos – 2007 – p. 6

  30. Other algorithms: XL In crypto: develop their own algorithms ! f i initial equations (of degree 2) D a parameter ∏ d 1 Multiply: Generate all the � ✂ f i with d 1 x i j D 2 ✄ ☎ j ✁ 2 Linearize: Consider each monomial in the x i j as a new variable and perform Gaussian elimination on the equations obtained in 1 . Ordering monomials such that all the terms containing one1 variable (say x 1 ) are eliminated last. 3 Solve: Assume that step 2 . yields at least one univariate equation in the powers of x 1 . Solve this equation over the finite field. Samos – 2007 – p. 7 4 Repeat: Simplify the equations and repeat the process

  31. Other algorithms: XL Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations N Courtois, A Klimov, J Patarin and A Shamir Abstract. [...] Gr¨ obner base algorithms have large exponential complexity and cannot solve in practice systems with n 15 . Kipnis � ✁ and Shamir [9] have recently introduced a new algorithm called ”relinearization”. [...] This is a challenge for Computer Algebra ! Samos – 2007 – p. 7

  32. Complexity ✝ ✝ ✞ ✝ ✞ ✞ I f 1 x 1 x n f m x 1 x n ✁ � � � ✆ ✁ ✁ ✁ ✆ ✆ ✆ ✆ ✁ ✁ ✁ ✆ x 1 x n ✂ ✄ h deg f ✝ ✞ ✁ ✝ ✞ ✝ ✞ f x 1 x n f x 1 x n h ✁ � ✆ ✁ ✁ ✁ ✆ ✆ ✁ ✁ ✁ ✆ ✆ ✆ ✁ ✁ ✁ ✆ h h ✝ ✝ ✞ ✝ ✞ ✞ ✁ ✁ ✁ I f x 1 x n h f x 1 x n h ✁ 1 m � � � ✆ ✁ ✁ ✁ ✆ ✆ ✆ ✆ ✆ ✁ ✁ ✁ ✆ ✆ n nb of variables, m nb of equations D maximal degree occurring dimension/degree Hilbert function/Regularity Samos – 2007 – p. 8

  33. Complexity (well known results) ✝ ✝ ✞ ✝ ✞ ✞ ✝ ✞ and deg I f 1 x 1 f m x 1 x n f i d ✁ ✁ ✆ ✁ ✁ ✁ ✆ ✁ ✁ ✁ ✆ ✆ ✁ ✁ ✁ ✆ Hypotheses none ONE Explicit example: Mayr and Meyer Complexity d 2 n Samos – 2007 – p. 9

  34. Complexity (well known results) ✝ ✝ ✞ ✝ ✞ ✞ ✝ ✞ and deg I f 1 x 1 f m x 1 x n f i 2 ✁ ✁ ✆ ✁ ✁ ✁ ✆ ✁ ✁ ✁ ✆ ✆ ✁ ✁ ✁ ✆ Hypotheses “set of zeros at infinity is finite” ✝ ✞ ✁ 0 dim I ✁ Gröbner basis (DRL ordering) [La83, Giu84] computed in time polynomial in 2 n maximal degree 1 when m n n ✁ ✁ ( Macaulay ) Lemma 1: For almost all systems: polynomial in 2 n Samos – 2007 – p. 9

  35. Complexity (well known results) ✝ ✝ ✞ ✝ ✞ ✞ ✝ ✞ and deg I f 1 x 1 f m x 1 x n f i 2 ✁ ✁ ✆ ✁ ✁ ✁ ✆ ✁ ✁ ✁ ✆ ✆ ✁ ✁ ✁ ✆ Hypotheses ✝ ✞ x i GF 2 ✄ Gröbner bases: Lemma 2 complexity is always polynomial in 2 n . Samos – 2007 – p. 9

  36. Efficient Algorithms Buchberger (1965) Involutive bases (Gerdt) F 4 (1999) linear algebra slim Gb (2005) momoms degree d in x 1 x n ✂ ✄ ✄ ✄ ✂ monom f i 1 ☎ ✄ ✄ ✄ A d monom f i 2 ✁ ✆ ☎ � ✄ ✄ ✄ monom f i 3 ☎ ✄ ✄ ✄ Samos – 2007 – p. 10

  37. Efficient Algorithms F 5 (2002) full rank matrix momoms degree d in x 1 x n ✂ ✄ ✄ ✄ ✂ monom f i 1 ☎ ✄ ✄ ✄ A d monom f i 2 ✁ ✆ ☎ � ✄ ✄ ✄ monom f i 3 ☎ ✄ ✄ ✄ Samos – 2007 – p. 10

  38. F 5 matrix Special/Simpler version of F 5 for dense/generic polynomials. the maximal degree D is a parameter of the ✝ ✞ algorithm. degree d m 2 , deg f i 2 ✁ ✁ homogeneous quadratic polynomials, degree d : Samos – 2007 – p. 11

  39. F 5 matrix ✝ ✞ 2 , deg 2 homogeneous quadratic m f i ✁ ✁ polynomials, degree d : m 1 m 2 m 3 m 4 m 5 ✁ ✁ ✁ u 1 f 1 x x x x x ✁ ✁ ✁ u 2 f 1 x x x x x � ✁ ✁ ✁ ✁ � ✁ u 3 f 1 x x x x x � ✁ ✁ ✁ ✁ � ✁ v 1 f 2 x x x x x ✁ ✁ ✁ v 2 f 2 x x x x x ✁ ✁ ✁ deg ✝ ✞ deg ✝ ✞ u i v i d 2 ✁ ✁ � Samos – 2007 – p. 11

  40. Gauss Gauss reduction: m 1 m 2 m 3 m 4 m 5 ✁ ✁ ✁ 1 u 1 f 1 x x x x ✁ ✁ ✁ u 2 f 1 0 1 x x x � ✁ ✁ ✁ ✁ � ✁ u 3 f 1 0 0 1 x x � ✁ ✁ ✁ ✁ � ✁ v 1 f 2 0 0 0 1 x ✁ ✁ ✁ v 2 f 2 0 0 0 0 1 ✁ ✁ ✁ Samos – 2007 – p. 12

  41. d d 1 � m 1 m 2 m 3 m 4 m 5 ☎ ☎ ☎ ✁ ✆ u 1 f 1 1 x x x x ☎ ☎ ☎ u 2 f 1 0 1 x x x ✂ ✝ ☎ ☎ ☎ ✂ ✝ u 3 f 1 0 0 1 x x ✂ ✝ ☎ ☎ ☎ ✂ ✝ ✂ ✝ ✂ ✝ v 1 f 2 0 0 0 1 x ✂ ✝ ☎ ☎ ☎ ✄ ✞ v 2 f 2 0 0 0 0 1 ☎ ☎ ☎ Samos – 2007 – p. 13

  42. d d 1 � m 1 m 2 m 3 m 4 m 5 ☎ ☎ ☎ ✁ ✆ u 1 f 1 1 x x x x ☎ ☎ ☎ u 2 f 1 0 1 x x x ✂ ✝ ☎ ☎ ☎ ✂ ✝ t 1 t 2 t 3 t 4 t 5 u 3 f 1 0 0 1 x x ✂ ✝ ☎ ☎ ☎ ☎ ☎ ☎ ✂ ✝ ✁ ✆ ✂ ✝ ✂ ✝ ☎ ☎ ☎ ☎ ☎ ☎ v 1 f 2 0 0 0 1 x ✂ ✝ ☎ ☎ ☎ v 1 x j f 2 0 1 x x x ✂ ✝ ✄ ✞ ☎ ☎ ☎ ✂ ✝ v 2 f 2 0 0 0 0 1 v 1 x j 1 f 2 0 0 1 x x ✂ ✝ ✂ ☎ ☎ ☎ ☎ ☎ ☎ ✂ ✝ ✂ ✝ v 1 x n f 2 0 0 0 1 x ✄ ✞ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ α j x α 1 if v 1 x � ✁ ✁ ✁ 1 j Samos – 2007 – p. 13

  43. � d d 1 � m 1 m 2 m 3 m 4 m 5 ☎ ☎ ☎ ✁ ✆ u 1 f 1 1 x x x x t 1 t 2 t 3 t 4 t 5 ☎ ☎ ☎ ☎ ☎ ☎ u 2 f 1 0 1 x x x ✂ ✝ ☎ ☎ ☎ ✁ ✆ ✂ ✝ ☎ ☎ ☎ ☎ ☎ ☎ u 3 f 1 0 0 1 x x ✂ ✝ ☎ ☎ ☎ ✂ ✝ v 1 x j f 2 0 1 x x x ✂ ✝ ☎ ☎ ☎ ✂ ✝ ✂ ✝ ✂ ✝ v 1 f 2 0 0 0 1 x v 1 x j 1 f 2 0 0 1 x x ✂ ✝ ✂ ✝ ✂ ☎ ☎ ☎ ☎ ☎ ☎ ✂ ✝ ✄ ✞ ✂ ✝ v 1 x n f 2 0 0 0 1 x ✄ ✞ v 2 f 2 0 0 0 0 1 ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ Keep v 1 x i f 2 iff v i x i � ✂ ✄ ✂ LT f 1 ✁ α j x α 1 if v 1 x � ✁ ✁ ✁ 1 j Samos – 2007 – p. 13

  44. Specific algorithms Nothing to do ! more equations more efficient Gb � computation Samos – 2007 – p. 14

  45. Specific algorithms x 2 x i ✁ i “Easy” part: we can handle efficiently that all the monomials are squarefree (Boolean Gröbner bases) and to develop specific linear algebra packages (over 2 ). ☎ Moreover, we have new trivial syzygies: f 2 f i f j f j f i f ✁ ✁ � 2 (2003/2005) specific version for 2 . F 5 ☎ Samos – 2007 – p. 14

  46. Specific Complexity (with B. Salvy, M. Bardet, 2005) Goal : estimate d n maximal degree occurring Gröbner comput. Idea: we construct A d following step by step F 5 A d full rank number of rows. � � momoms degree d in x 1 x n ✂ ✄ ✄ ✄ ✂ � ✂ monom d 2 f i 1 ☎ ☎ ✄ ✄ ✄ � ✂ A d monom d 2 f i 2 ✁ ✆ ☎ � ☎ ✄ ✄ ✄ � ✂ monom d 2 f i 3 ☎ ☎ ✄ ✄ ✄ Samos – 2007 – p. 15

  47. F 5 criterion Criterion: t f j is in the matrix if t � ✝ ✝ ✞ ✞ , Id LT G j ✄ 1 � where G j 1 is the Gröbner basis of ✂ ✟ . f 1 f j 1 ✆ ✁ ✁ ✁ ✆ � � ✝ ✞ ✂ ✟ nb of rows when computing in U d n f 1 f i i ✆ ✁ ✁ ✁ ✆ ✁ degree d . Samos – 2007 – p. 16

  48. Recurrence relation For d 2 : i 1 n d 2 � ∑ � ✝ ✞ ✝ ✞ U d n i U d n ✁ i 2 j � � � d 2 ✁ ✁ � 1 j ✁ � ✄ � ✄ ✁ ✂ ✁ ✂ criterion number of monomials of degree d 2 ☎ � Samos – 2007 – p. 17

  49. End of the computation col row h[d,i]= row − col degree d ✝ ✞ 0 end of the Gröbner computation h d n � m ✁ Compute biggest real root N d of h d ✝ ✞ . n m ✁ Samos – 2007 – p. 18

  50. Generating series Theorem 1.1 f i degree d i , i m finite field 1 ✁ ✆ ✁ ✁ ✁ ✆ q : ☎ y d iq 1 n m y d i � 1 ∏ ∑ ∞ y q 1 � m y d H m 0 h d � ✁ ✁ d 1 y y d iq 1 ✁ ✁ 1 � � 1 i ✁ particular case: d i 2 , GF(2) n m eqs ✁ ✁ ∞ n 1 y ∑ n y d h d ✁ y 2 1 ✁ d 0 ✁ Samos – 2007 – p. 19

  51. Asymptotic expansion biggest real root of n dy 1 1 y h d ✁ n 2 i π y 2 y d 1 � 1 ✁ C Samos – 2007 – p. 20

  52. Asymptotic expansion λ 1 1 1 1 ✝ ✞ d n λ 0 n n O 3 ✁ � 4 1 λ n 3 3 0 1 n 1 ✝ ✞ 1 0034n O d n 3 � 1 11 11360 ✁ n ✁ 3 where λ 0 � � � 3 2 3 5 2 1 2 72 42 3 11 13 � ✁ ✁ and λ 1 is expressed in term of the biggest zero of the Airy function (solution ∂ 2 y 0 ) zy ∂ z 2 ✁ � Almost exact formula when n 3 ! Samos – 2007 – p. 20

  53. Maximal Degree ( F 2 ) degree 14 12 10 8 6 4 2 0 n 3 9 16 24 32 41 49 58 67 77 86 95 0 Samos – 2007 – p. 21

  54. Conclusion Classification: m number of polynomials, n variables exponential complexity m cste n ✁ ✝ ✞ sub exponential complexity cste nlog m n ✁ cste n 2 polynomial complexity m ✁ Samos – 2007 – p. 22

  55. HFE HFE = Hidden Fields Equations public key cryptosystem using polynomial operations over finite fields proposed by Jacques Patarin (96) very promising cryptosystem: signatures as short as 128, 100 and even 80 bits . Samos – 2007 – p. 23

  56. HFE x 2 i 2 j c 17 x 17 c 16 x 16 � ✝ ✞ secret key P x ✁ � � � � � � � � � 2 n ✝ ✞ c 16 c 17 GF ✄ ✁ ✁ ✁ ✆ ✆ ✆ ✁ ✁ ✁ univariate polynomial structure is hidden Samos – 2007 – p. 23

  57. HFE x 2 i 2 j c 17 x 17 c 16 x 16 � ✝ ✞ secret key P x ✁ � � � � � � � � � ∑ n 1 0 x i w i 2 n 2 n ✝ ✞ , x i ✝ ✞ , w ✝ ✞ x GF GF 2 GF � ✄ ✄ ✄ ✁ i ✁ � ✝ ✞ g 1 x 0 x n 0 ✁ 1 ✁ ✆ ✁ ✁ ✁ ✆ � � � � ✁ ✝ ✞ g n x 0 x n 0 ✂ ✁ 1 ✆ ✁ ✁ ✁ ✆ � where g i coeff of w i in P ∑ n 1 0 x i w i ✝ ✞ (degree 2 ) � i ✁ Samos – 2007 – p. 23

  58. HFE x 2 i 2 j c 17 x 17 c 16 x 16 � ✝ ✞ secret key P x ✁ � � � � � � � � � ∑ n 1 0 x i w i 2 n 2 n ✝ ✞ , x i ✝ ✞ , w ✝ ✞ x GF GF 2 GF � ✄ ✄ ✄ ✁ i ✁ (Random) Change of coordinates n 1 � ∑ x i a i j y j ✁ ✁ j 0 ✁ (Random) Mix of equations n ∑ f i b i j g j ✁ ✁ j 1 Samos – 2007 – p. 23 ✁

  59. HFE x 2 i 2 j c 17 x 17 c 16 x 16 � ✝ ✞ secret key P x ✁ � � � � � � � � � ∑ n 1 0 x i w i 2 n 2 n ✝ ✞ , x i ✝ ✞ , w ✝ ✞ x GF GF 2 GF � ✄ ✄ ✄ ✁ i ✁ Public key : � ✝ ✞ f 1 y 0 y n 1 ✁ ✆ ✁ ✁ ✁ ✆ � � � � ✁ ✝ ✞ f n y 0 y n ✂ 1 ✆ ✁ ✁ ✁ ✆ � Samos – 2007 – p. 23

  60. HFE encryption Initial ✝ ✞ x 1 x n ✆ ✁ ✁ ✁ ✆ Samos – 2007 – p. 24

  61. HFE encryption Initial ✝ ✞ x 1 x n ✆ ✁ ✁ ✁ ✆ ✝ ✞ Encryption z i f i x 1 x n ✁ ✆ ✁ ✁ ✁ ✆ Samos – 2007 – p. 24

  62. HFE encryption Initial ✝ ✞ x 1 x n ✆ ✁ ✁ ✁ ✆ ✝ ✞ Encryption z i f i x 1 x n ✁ ✆ ✁ ✁ ✁ ✆ Send ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ Samos – 2007 – p. 24

  63. HFE decryption Initial ✝ ✞ x 1 x n ✆ ✁ ✁ ✁ ✆ ✝ ✞ Decryption z i f i x 1 x n ✁ ✆ ✁ ✁ ✁ ✆ Send ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ secret Initial ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ Decryption Solve P ✝ ✞ x z ✁ Samos – 2007 – p. 25

  64. HFE decryption Initial ✝ ✞ x 1 x n ✆ ✁ ✁ ✁ ✆ ✝ ✞ Decryption z i f i x 1 x n ✁ ✆ ✁ ✁ ✁ ✆ Send ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ Enemy secret Initial ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ Initial ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ f 1 z 1 � Decryption Decryption Solve P ✝ ✞ x z ✁ f m z m � Samos – 2007 – p. 25

  65. HFE decryption Initial ✝ ✞ x 1 x n ✆ ✁ ✁ ✁ ✆ ✝ ✞ Decryption z i f i x 1 x n ✁ ✆ ✁ ✁ ✁ ✆ Send ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ Enemy secret Initial ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ Initial ✝ ✞ z 1 z n ✆ ✁ ✁ ✁ ✆ f 1 z 1 � Decryption Decryption Solve P ✝ ✞ x z ✁ f m z m � Hence, solving algebraic system. Samos – 2007 – p. 25

  66. Degree of univariate polynomial Time to solve the univariate polynomial of degree 2 n (MCA d : O ✝ ✝ ✞ ✝ ✞ ✞ operations in M d log d ☎ Gathen/Gerhard) ✝ ✞ (80,129) (80,257) (80,513) n d ✆ NTL (CPU time) 0.6 sec 2.5 sec 6.4 sec ✝ ✞ (128,129) (128,257) (128,513) n d ✆ NTL (CPU time) 1.25 sec 3.1 sec 9.05 sec (NTL/Shoup PC Pentium III 1000 Mhz) d cannot be too big ! Samos – 2007 – p. 26

  67. Experiments Buchberger Maple slimGb Macaulay 2 Singular F 4 F 5 after 10m 12 17 19 19 22 35 Samos – 2007 – p. 27

  68. Experiments Buchberger Maple slimGb Macaulay 2 Singular F 4 F 5 after 10m 12 17 19 19 22 35 after 2h 14 19 23 21 28 45 Samos – 2007 – p. 27

  69. Experiments Challenge 1 broken Recover Experimentally the complexity of HFE wrt degree of hidden polynomial ✝ ✞ Let D be the maximum degree occuring in d n ✆ the Gröbner computation of HFE polynomial degree d , 2 n . ☎ Samos – 2007 – p. 28

  70. Challenge 1 Proposed by J. Patarin 80 equations in degree 2 Random ? Average nb of terms: 1623.9 ✂ ✄ n n 1 � n 1 2 1620 5 ✁ ✁ 2 Samos – 2007 – p. 29

  71. Challenge 1 But after F 5 � 2 : 6.4 H can be detected that it is not random ! After 187892 sec ( 2 days ) find 4 solutions � (one proc Alpha 1000 Mhz + 4 Go RAM) Samos – 2007 – p. 29

  72. Challenge 1 (solutions) 80 ∑ x i 2 i 1 X � ✁ 1 i ✁ X 644318005239051140554718 ✁ X 934344890045941098615214 ✁ X 1022677713629028761203046 ✁ 1037046082651801149594670 X ✁ Samos – 2007 – p. 30

  73. Maximal degree 16 Maximal Degree in the Gröbner basis computation random system 14 12 10 8 6 HFE 128<d<513 HFE 16<d<129 4 HFE 3<d<17 2 n 0 0 10 20 30 40 50 60 70 80 90 100 Samos – 2007 – p. 31

  74. HFE Conclusion d D Exp comp n 6 3 d 17 � n 8 4 17 d 129 � n 10 5 129 d 513 � Complexity of HFE Samos – 2007 – p. 32

  75. Conclusion Applications: Challenging problem for � Computer Algebra. Need very powerful algorithm/implementation. Samos – 2007 – p. 33

  76. F 4 An efficient algorithm for computing Gröbner using linear algebra Jean-Charles Faug` ere CNRS - INRIA - Universit´ e Paris 6 SALSA Project Samos 2007 Samos 2007 – F 4 – p. 1

  77. Plan of the talk Goal of F 4 Description of the algorithm. Step by step example. Samos 2007 – F 4 – p. 2

  78. Goal of F 4 Among other things 3 big difficulties: A crucial issue to be faced in implementing the Buchberger algorithm is the choice of a Strategy . An apparent difficulty is the growth of the coefficients when computing with big integers. It is difficult to parallelize this algorithm: f n depends strongly on f n 1 , f n 2 , (if you ✁ ✁ ✁ � � remove zero !). Samos 2007 – F 4 – p. 3

  79. Goal of F 4 There are a lot of choices: select a critical pair in the list of critical pairs. choose one reductor among a list of reductors Buchberger theorem not important for the � correctness of the algorithm Samos 2007 – F 4 – p. 3

  80. Notations ✁ ✄ P is the polynomial ring. R x 1 x n � ✂ ✁ ✁ ✁ ✂ T the set of all terms. ✁ ✄ algebraic equations F f 1 f m � ✂ ✁ ✁ ✁ ✂ ☎ ✆ the support of F . T F τ a critical pair Pair ☎ ✆ ☎ ✆ f g t f f t g g � ✂ ✂ ✂ ✂ ✂ τ T 2 ☎ ✆ ☎ ✆ ☎ ✆ ☎ ☎ ✆ t f t g t g LT g t f LT f lcm LT f l ✝ � � � ✂ ✂ ✁ ✁ ✂ ☎ ☎ ✆ ✆ ☎ ✆ the two projections Left , Pair f g t f f � ✂ ✂ ☎ ☎ ✆ ✆ ☎ ✆ Right Pair f g t g g � ✂ ✂ Samos 2007 – F 4 – p. 4

  81. Linear Algebra and Matrices Trivial link: Linear Algebra Polynomials ☎ ✆ Definition: F , ordering. A Matrix f 1 f m � � ✂ ✁ ✁ ✁ ✂ representation M F of F is such that T T F M F X � ✁ where X the monomials (sorted for ) T ☎ ✆ : F � m 1 m 2 m 3 ✁ ✁ f 1 ✁ ✁ ✁ f 2 M F � ✁ ✁ ✁ f 3 ✁ ✁ ✁ Samos 2007 – F 4 – p. 5

Recommend


More recommend