global weyl modules and maximal parabolics of twisted
play

Global Weyl modules and maximal parabolics of twisted affine Lie - PowerPoint PPT Presentation

Motivation Background Realization of Maximal Parabolic Global Weyl Module A Global Weyl modules and maximal parabolics of twisted affine Lie algebras Matthew Lee Department of Mathematics University of California, Riverside Interactions


  1. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Global Weyl modules and maximal parabolics of twisted affine Lie algebras Matthew Lee Department of Mathematics University of California, Riverside Interactions of quantm affine algebras with cluster algebras, current algebras and categorification June 5, 2018 Matthew Lee Global Weyl modules

  2. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ For a simple Lie algebra g ⊃ h ∆ = { α i : i ∈ I } Φ + = { � i ∈ I a i α i : a i ≥ 0 ∀ i } � g α = h ⊕ n + b = h ⊕ α ∈ Φ + P + dominant integral weights Matthew Lee Global Weyl modules

  3. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Universal highest modules g or � g p parabolic Category O p s.s. Verma Module Parabolic Verma Module affine Global Weyl module ??? Bimodule Matthew Lee Global Weyl modules

  4. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Universal highest modules g or � p parabolic g s.s. Verma Module Parabolic Verma Module affine Global Weyl module ??? Bimodule Matthew Lee Global Weyl modules

  5. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Universal highest modules g or � p parabolic g s.s. Verma Module Parabolic Verma Module affine Global Weyl module ??? Bimodule Matthew Lee Global Weyl modules

  6. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Affine Lie algebras Proposition (Chari–Pressley, 2001) Let V be an integrable U ( g [ t , t − 1 ] ⊕ C d ) -module generated by a non-zero element v ∈ V + λ . Then V is a quotient of W ( λ ) , the global Weyl module. W ( λ ) is a ( U ( g [ t , t − 1 ]) , A λ ) -bimodule A λ = U ( h [ t , t − 1 ]) / Ann U ( h [ t , t − 1 ]) w λ Matthew Lee Global Weyl modules

  7. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Affine Lie algebras Proposition (Chari–Pressley, 2001) Let V be an integrable U ( g [ t , t − 1 ] ⊕ C d ) -module generated by a non-zero element v ∈ V + λ . Then V is a quotient of W ( λ ) , the global Weyl module. W ( λ ) is a ( U ( g [ t , t − 1 ]) , A λ ) -bimodule A λ = U ( h [ t , t − 1 ]) / Ann U ( h [ t , t − 1 ]) w λ Matthew Lee Global Weyl modules

  8. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Affine Lie algebras Proposition (Chari–Pressley, 2001) Let V be an integrable U ( g [ t , t − 1 ] ⊕ C d ) -module generated by a non-zero element v ∈ V + λ . Then V is a quotient of W ( λ ) , the global Weyl module. W ( λ ) is a ( U ( g [ t , t − 1 ]) , A λ ) -bimodule A λ = U ( h [ t , t − 1 ]) / Ann U ( h [ t , t − 1 ]) w λ Matthew Lee Global Weyl modules

  9. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Universal highest modules g or � g p parabolic s.s. Verma Module Parabolic Verma Module affine Global Weyl module ??? (untwisted and twisted) Matthew Lee Global Weyl modules

  10. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Universal highest modules g or � p parabolic g s.s. Verma Module Parabolic Verma Module affine Global Weyl module (Untwisted) Global (untwisted and twisted) Weyl Module ??? Matthew Lee Global Weyl modules

  11. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Universal highest modules g or � p parabolic g s.s. Verma Module Parabolic Verma Module affine Global Weyl module (Untwisted) Global (untwisted and twisted) Weyl Module (Twisted)??? Matthew Lee Global Weyl modules

  12. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Maximal parabolic k − 1 � g = g s , g 0 is simple, and each g s , 1 ≤ s ≤ k − 1, is an s = 0 irreducible g 0 -module k g g 0 g k V g 0 ( 2 θ s 2 A 2 n B n 0 ) V g 0 ( θ s 2 A 2 n − 1 , n ≥ 2 C n 0 ) V g 0 ( θ s 2 D n + 1 , n ≥ 3 B n 0 ) V g 0 ( θ s 2 E 6 F 4 0 ) V g 0 ( θ s 3 D 4 G 2 0 ) σ : C [ t , t − 1 ] → C [ t , t − 1 ] by σ ( f ( t )) = f ( ξ − 1 t ) , ξ a k -th root of unity Matthew Lee Global Weyl modules

  13. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Maximal parabolic k − 1 � g = g s , g 0 is simple, and each g s , 1 ≤ s ≤ k − 1, is an s = 0 irreducible g 0 -module k g g 0 g k V g 0 ( 2 θ s 2 A 2 n B n 0 ) V g 0 ( θ s 2 A 2 n − 1 , n ≥ 2 C n 0 ) V g 0 ( θ s 2 D n + 1 , n ≥ 3 B n 0 ) V g 0 ( θ s 2 E 6 F 4 0 ) V g 0 ( θ s 3 D 4 G 2 0 ) σ : C [ t , t − 1 ] → C [ t , t − 1 ] by σ ( f ( t )) = f ( ξ − 1 t ) , ξ a k -th root of unity Matthew Lee Global Weyl modules

  14. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Maximal parabolic k − 1 � g = g s , g 0 is simple, and each g s , 1 ≤ s ≤ k − 1, is an s = 0 irreducible g 0 -module k g g 0 g k V g 0 ( 2 θ s 2 A 2 n B n 0 ) V g 0 ( θ s 2 A 2 n − 1 , n ≥ 2 C n 0 ) V g 0 ( θ s 2 D n + 1 , n ≥ 3 B n 0 ) V g 0 ( θ s 2 E 6 F 4 0 ) V g 0 ( θ s 3 D 4 G 2 0 ) σ : C [ t , t − 1 ] → C [ t , t − 1 ] by σ ( f ( t )) = f ( ξ − 1 t ) , ξ a k -th root of unity Matthew Lee Global Weyl modules

  15. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Realization The Maximal parabolic, p j = < x ± ⊗ 1 , x ± 0 ⊗ t ± 1 , x + ⊗ 1 > ⊂ ( g [ t , t − 1 ]) σ i j Proposition (L.) For a simply laced Lie algebra g and some 0 < j ≤ n p j ≃ ( g [ t ] σ ) τ for some automorphism τ . Since the fixed points of g στ form a semisimple Lie algebra, we can define I 0 , ∆ 0 , and P + 0 . Matthew Lee Global Weyl modules

  16. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Realization The Maximal parabolic, p j = < x ± ⊗ 1 , x ± 0 ⊗ t ± 1 , x + ⊗ 1 > ⊂ ( g [ t , t − 1 ]) σ i j Proposition (L.) For a simply laced Lie algebra g and some 0 < j ≤ n p j ≃ ( g [ t ] σ ) τ for some automorphism τ . Since the fixed points of g στ form a semisimple Lie algebra, we can define I 0 , ∆ 0 , and P + 0 . Matthew Lee Global Weyl modules

  17. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Realization The Maximal parabolic, p j = < x ± ⊗ 1 , x ± 0 ⊗ t ± 1 , x + ⊗ 1 > ⊂ ( g [ t , t − 1 ]) σ i j Proposition (L.) For a simply laced Lie algebra g and some 0 < j ≤ n p j ≃ ( g [ t ] σ ) τ for some automorphism τ . Since the fixed points of g στ form a semisimple Lie algebra, we can define I 0 , ∆ 0 , and P + 0 . Matthew Lee Global Weyl modules

  18. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Global Weyl Module For λ ∈ P + 0 , W ( λ ) is generated by w λ with relations: n + [ t ] στ . w λ = 0 , ( x − ⊗ 1 ) λ ( h i )+ 1 . w λ = 0 . h . w λ = λ ( h ) w λ i For λ ∈ P + 0 , W ( λ ) is a ( U ( g [ t ] στ ) , A λ ) -bimodule. A λ = U ( h [ t ] στ ) / Ann U ( h [ t ] στ ) w λ To obtain a better description of W ( λ ) we need to describe A λ Matthew Lee Global Weyl modules

  19. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Global Weyl Module For λ ∈ P + 0 , W ( λ ) is generated by w λ with relations: n + [ t ] στ . w λ = 0 , ( x − ⊗ 1 ) λ ( h i )+ 1 . w λ = 0 . h . w λ = λ ( h ) w λ i For λ ∈ P + 0 , W ( λ ) is a ( U ( g [ t ] στ ) , A λ ) -bimodule. A λ = U ( h [ t ] στ ) / Ann U ( h [ t ] στ ) w λ To obtain a better description of W ( λ ) we need to describe A λ Matthew Lee Global Weyl modules

  20. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Global Weyl Module For λ ∈ P + 0 , W ( λ ) is generated by w λ with relations: n + [ t ] στ . w λ = 0 , ( x − ⊗ 1 ) λ ( h i )+ 1 . w λ = 0 . h . w λ = λ ( h ) w λ i For λ ∈ P + 0 , W ( λ ) is a ( U ( g [ t ] στ ) , A λ ) -bimodule. A λ = U ( h [ t ] στ ) / Ann U ( h [ t ] στ ) w λ To obtain a better description of W ( λ ) we need to describe A λ Matthew Lee Global Weyl modules

  21. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ Global Weyl Module For λ ∈ P + 0 , W ( λ ) is generated by w λ with relations: n + [ t ] στ . w λ = 0 , ( x − ⊗ 1 ) λ ( h i )+ 1 . w λ = 0 . h . w λ = λ ( h ) w λ i For λ ∈ P + 0 , W ( λ ) is a ( U ( g [ t ] στ ) , A λ ) -bimodule. A λ = U ( h [ t ] στ ) / Ann U ( h [ t ] στ ) w λ To obtain a better description of W ( λ ) we need to describe A λ Matthew Lee Global Weyl modules

  22. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ A λ Theorem (L.) A λ / Jac ( A λ ) ≃ C [ P i , r i : r i ≤ min { λ ( h i ) , λ ( h 0 ) } ] / � < P 1 , r 1 · · · P n , r n : a i ( α 0 ) r i ≥ λ ( h 0 ) + 1 > i ∈ I 0 If a i ( 0 ) ≤ 1 ∀ i ∈ I 0 then Jac ( A λ ) = 0. Matthew Lee Global Weyl modules

  23. Motivation Background Realization of Maximal Parabolic Global Weyl Module A λ A λ Theorem (L.) A λ / Jac ( A λ ) ≃ C [ P i , r i : r i ≤ min { λ ( h i ) , λ ( h 0 ) } ] / � < P 1 , r 1 · · · P n , r n : a i ( α 0 ) r i ≥ λ ( h 0 ) + 1 > i ∈ I 0 If a i ( 0 ) ≤ 1 ∀ i ∈ I 0 then Jac ( A λ ) = 0. Matthew Lee Global Weyl modules

Recommend


More recommend