glass transitions and cooperative length scales
play

Glass transitions, and cooperative length scales Chiara Cammarota - PowerPoint PPT Presentation

Glass transitions, and cooperative length scales Chiara Cammarota 26. 8. 2014 Cargse Questions on glass transition still to be answered Critical properties of the glass transition The glass transition does really exist?


  1. Glass transitions, and cooperative length scales Chiara Cammarota 26. 8. 2014 Cargèse

  2. Questions on glass transition still to be answered � � Critical properties of the glass transition � � The glass transition does really exist? � � Does the static approach explain the mechanism for glass formation? � � Issues about the glass transition � � Relaxation time diverges exponentially at the transition � � Slow growth of the correlation length: the universal behavior is not within reach � � The low temperature phase is not known inaccessible critical region T g T K T d Time and length scales “ pleasure and pain” of the glass transition

  3. A new glass transition

  4. The ideal glass transition (the old one) � � � � An equilibrium configuration at temperature . T The RFOT theory: T.R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Phys. Rev. A 40, 1045 (1989) N ( f ) = exp( l d s c ( f )) vs Ts c ( T ) l d Υ l θ ✓ Υ ◆ 1 / ( d − θ ) ∆ F I = Υ l θ l s = Potential energy Ts c Al ψ � � s /T T τ = τ 0 exp

  5. Glass transition by random pinning C.C. and G.Biroli, PNAS 109 8850 (2012) We freeze a fraction of c particles randomly chosen in an equilibrium configuration at temperature . T l p Pin particles at fixed : ↑↑ τ p ↑↑ s c ↓ ↑ T c s

  6. Glass transition by random pinning C.C. and G.Biroli, PNAS 109 8850 (2012) , : c T s P c ( T, c ) ' s c ( T ) � cY ( T ) c K ( T ) = s c ( T ) /Y ( T ) Υ P ( T, c ) ∼ Υ ( T ) Entropy vanishing transition induced by pinning! ✓ Υ P ◆ 1 / ( d − θ ) ◆ 1 / ( d − θ ) ✓ Υ l P s = = � l s The RFOT theory Ts P T ( s c � cY ) c reloaded: s ) ψ /T ⇥ ⇤ τ p ∼ exp A ( l p

  7. Glass transition by random pinning An indirect study of the glass transition and of metastability in glass- formers. � S.Franz and G.Parisi, Phys. Rev. Lett. 79 , 2486 (1997) � An induced glass transition with favourable features: � For , the same glass phenomenology and critical properties as . � T > T K c < c K The configuration chosen to pin particles is always a typical equilibrium configuration. � Equilibrium can be observed in the glassy phase. � Study of the glass transition not left to doubtful extrapolations. � � The large amount of predictions: a stringent test for theories of glassiness (i.e. RFOT theory). inaccessible critical region T g T K T d , a second control parameter for the liquid-glass phase diagram c

  8. The liquid-glass phase diagram T LIQUID T d V.Krakoviack, PRE 84, 050501(R) (2011) G.Szamel and E.Flenner EPL 101 66005 (2013) S.Nandi et al., arXiv:1401.3253 (2014) W.Kob and L.Berthier, PRE 85 011102 (2012) S.Gokhale et al., arXiv:1406.6478 (2014) T g F.Krzakala et al., Phys. Rev. X 2, 021005 (2012) F.Ricci-Tersenghi, and G.Semerjian, J.Stat.Mech. P09001 (2009) T K GLASS C.C. and G.Biroli, PNAS 109 8850 (2012) C.C. and G.Biroli, EPL 98 16011 (2012) C.C. and G.Biroli J.Chem.Phys. 138, 12A547 (2013) C.C., EPL 101 56001 (2013) C.C.and B.Seoane, arXiv:1403.7180 (2014)

  9. The liquid-glass phase diagram T Mean Field (statics and dynamics) results in Spin Glasses � Renormalization Group arguments � Hypernetted Chain computations � � � 1-Thermodynamics � and � 2- Dynamics LIQUID T d V.Krakoviack, PRE 84, 050501(R) (2011) G.Szamel and E.Flenner EPL 101 66005 (2013) S.Nandi et al., arXiv:1401.3253 (2014) W.Kob and L.Berthier, PRE 85 011102 (2012) S.Gokhale et al., arXiv:1406.6478 (2014) T g F.Krzakala et al., Phys. Rev. X 2, 021005 (2012) F.Ricci-Tersenghi, and G.Semerjian, J.Stat.Mech. P09001 (2009) T K GLASS c C.C. and G.Biroli, PNAS 109 8850 (2012) C.C. and G.Biroli, EPL 98 16011 (2012) C.C. and G.Biroli J.Chem.Phys. 138, 12A547 (2013) C.C., EPL 101 56001 (2013) C.C.and B.Seoane, arXiv:1403.7180 (2014)

  10. The liquid-glass phase diagram T Mean Field (statics and dynamics) results in Spin Glasses � Renormalization Group arguments � 0.75 Hypernetted Chain computations � � (c h ,T h ) � 1-Thermodynamics � 0.7 and � 2- Dynamics LIQUID T d V.Krakoviack, PRE 84, 050501(R) (2011) G.Szamel and E.Flenner EPL 101 66005 (2013) 0.65 S.Nandi et al., arXiv:1401.3253 (2014) W.Kob and L.Berthier, PRE 85 011102 (2012) S.Gokhale et al., arXiv:1406.6478 (2014) T g T K (c) F.Krzakala et al., Phys. Rev. X 2, 021005 (2012) 0.6 F.Ricci-Tersenghi, and G.Semerjian, J.Stat.Mech. P09001 (2009) T K GLASS c C.C. and G.Biroli, PNAS 109 8850 (2012) C.C. and G.Biroli, EPL 98 16011 (2012) 0.55 C.C. and G.Biroli J.Chem.Phys. 138, 12A547 (2013) C.C., EPL 101 56001 (2013) C.C.and B.Seoane, arXiv:1403.7180 (2014) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

  11. The liquid-glass phase diagram T Mean Field (statics and dynamics) results in Spin Glasses � Renormalization Group arguments � 0.75 Hypernetted Chain computations � � (c h ,T h ) � 1-Thermodynamics � 0.7 and � 2- Dynamics LIQUID T d V.Krakoviack, PRE 84, 050501(R) (2011) G.Szamel and E.Flenner EPL 101 66005 (2013) 0.65 T S.Nandi et al., arXiv:1401.3253 (2014) O F R nucleation W.Kob and L.Berthier, PRE 85 011102 (2012) S.Gokhale et al., arXiv:1406.6478 (2014) T g T K (c) F.Krzakala et al., Phys. Rev. X 2, 021005 (2012) 0.6 F.Ricci-Tersenghi, and G.Semerjian, J.Stat.Mech. P09001 (2009) T K GLASS c C.C. and G.Biroli, PNAS 109 8850 (2012) C.C. and G.Biroli, EPL 98 16011 (2012) 0.55 C.C. and G.Biroli J.Chem.Phys. 138, 12A547 (2013) C.C., EPL 101 56001 (2013) C.C.and B.Seoane, arXiv:1403.7180 (2014) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

  12. The liquid-glass phase diagram T Mean Field (statics and dynamics) results in Spin Glasses � Renormalization Group arguments � 0.75 Hypernetted Chain computations � � (c h ,T h ) � RFIM critical behaviour & 1-Thermodynamics � S.Franz et al., arXiv:1105.5230 (2011) 0.7 and � MCT exp relaxation 2- Dynamics LIQUID T d V.Krakoviack, PRE 84, 050501(R) (2011) G.Szamel and E.Flenner EPL 101 66005 (2013) 0.65 T S.Nandi et al., arXiv:1401.3253 (2014) O F R nucleation W.Kob and L.Berthier, PRE 85 011102 (2012) S.Gokhale et al., arXiv:1406.6478 (2014) T g T K (c) F.Krzakala et al., Phys. Rev. X 2, 021005 (2012) 0.6 F.Ricci-Tersenghi, and G.Semerjian, J.Stat.Mech. P09001 (2009) T K GLASS c C.C. and G.Biroli, PNAS 109 8850 (2012) C.C. and G.Biroli, EPL 98 16011 (2012) 0.55 C.C. and G.Biroli J.Chem.Phys. 138, 12A547 (2013) C.C., EPL 101 56001 (2013) C.C.and B.Seoane, arXiv:1403.7180 (2014) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

  13. Cooperative length scales

  14. A first correlation length-scale from random pinning C.C. and B.Seoane, arXiv: 1403.7180 (2014) Amorphous order reconstructed by at � HNC computations in an least pinned particles . � Hard Sphere system First principle computation of a cooperative length scale ξ c ( φ ) = 1 /c 1 /d with c K ∼ s c ( φ ) such that s P c ( c K , φ ) = 0 K S.Karmakar, and I.Procaccia, arXiv:1105.4053 (2011) L.Berthier, and W.Kob PRE 85 011102 (2012) B.Charbonneau et al., Phys. Rev. Lett. 108, 035701 (2012)

  15. A first correlation length-scale from random pinning C.C. and B.Seoane, arXiv: 1403.7180 (2014) Amorphous order reconstructed by at � HNC computations in an least pinned particles . � Hard Sphere system First principle computation of a cooperative length scale ξ c ( φ ) = 1 /c 1 /d with c K ∼ s c ( φ ) such that s P c ( c K , φ ) = 0 K S.Karmakar, and I.Procaccia, arXiv:1105.4053 (2011) L.Berthier, and W.Kob PRE 85 011102 (2012) B.Charbonneau et al., Phys. Rev. Lett. 108, 035701 (2012) 2.8 2.6 2.4 2.2 2 ξ c ∼ 1 /s 1 / 3 1.8 ξ ( φ ) c 1.6 1.4 Quite a slowly divergent � 1.2 length-scale! � 1 Irrelevant in the 0.8 experimentally/numerically 0.6 0.595 0.6 0.605 0.61 0.615 0.62 0.625 0.63 accessible region φ , 1 /T 1 /T K

  16. More than one correlation length scale! C.C. and B.Seoane, arXiv: 1403.7180 (2014) S.Franz, and A.Montanari, J.Phys.A 40 F251 (2007) G.Biroli, J.-P.Bouchaud, A.Cavagna et al., Nat.Phys. 4 771 (2008) G.M.Hocky, T.E.Markland, D.R.Reichman, PRL 108 225506 (2012) L.Berthier, and W.Kob PRE 85 011102 (2012) When does the boundary select the cavity configuration? ξ P S ∼ Y ( φ ) /S c ( φ )

  17. More than one correlation length scale! C.C. and B.Seoane, arXiv: 1403.7180 (2014) S.Franz, and A.Montanari, J.Phys.A 40 F251 (2007) G.Biroli, J.-P.Bouchaud, A.Cavagna et al., Nat.Phys. 4 771 (2008) G.M.Hocky, T.E.Markland, D.R.Reichman, PRL 108 225506 (2012) L.Berthier, and W.Kob PRE 85 011102 (2012) When does the boundary select the cavity configuration? 20 l P S ( φ ) ξ ( φ ) 10 ξ P S 15 ξ c ξ P S ( φ ) l P S ( φ ) 10 1 ξ P S ∼ Y ( φ ) /S c ( φ ) 0.001 0.01 φ K − φ 5 A faster divergence! � � 0 A way to test the � 0.618 0.62 0.622 0.624 0.626 0.628 0.63 RFOT theory φ , 1 /T 1 /T K

  18. More than two correlation length scales… P.Scheidler, W.Kob, K.Binder, and G.Parisi, Phil.Mag.B 82 283 (2002) W.Kob, S. Roldán-Vargas, and L.Berthier, Nat.Phys. 8, 164-167 (2012) G.Gradenigo et al., J. Chem. Phys. 138, 12A509 (2013) How far the wall selects the left-side configuration? � � The high/low- interface behaves like an � q elastic manifold in a random field environment! G.Biroli and C.C., to appear An effect of the self induced disorder encoded in the wall configurations q ( z ) z

Recommend


More recommend