✬ ✩ GEOMETRIE STOCHASTIQUE ET THEORIE DE L’INFORMATION F. Baccelli INRIA & ENS En collaboration avec V. Anantharam, UC Berkeley SMAI 2011, Mai 2011 ✫ ✪
✬ ✩ 1 Structure of the Lecture Shannon Capacity and Error Exponents for Point Processes – Additive White Gaussian Noise AWGN – Additive Stationary Ergodic Noise ASEN Shannon Capacity and Error Exponents for Additive Noise Channels with Power Constraints G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 2 AWGN DISPLACEMENT OF A POINT PROCESS µ n : (simple) stationary ergodic point process on I R n . λ n = e nR : intensity of µ n . k } : points of µ n (codewords). { T n P 0 n : Palm probability of µ n . I { D n k } : i.i.d. sequence of displacements, independent of µ n : D n k = ( D n k (1) , . . . , D n k ( n )) i.i.d. over the coordinates and N (0 , σ 2 ) (noise). Z n k = T n k + D n k : displacement of the p.p. (received messages) G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 3 AWGN UNDER MLE DECODING {V n k } : Voronoi cell of T n k in µ n . Error probability under MLE decoding: � k 1 T n k ∈ B n (0 ,A ) 1 Z n ∈V n k / P 0 n ( Z n ∈ V n P 0 n ( D n ∈ V n k p e ( n ) = I 0 / 0 ) = I 0 / 0 ) = lim � k 1 T n A →∞ k ∈ B n (0 ,A ) Theorem 1-wgn Poltyrev [94] 1. If R < − 1 2 log(2 πeσ 2 ) , there exists a sequence of point pro- cesses µ n (e.g. Poisson) with intensity e nR s.t. p e ( n ) → 0 , n → ∞ 2. If R > − 1 2 log(2 πeσ 2 ) , for all sequences of point processes µ n with intensity e nR , p e ( n ) → 1 , n → ∞ G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 4 Proof of 2 [AB 08] – V n ( r ) : volume of the n -ball or radius r . 0 | = V n ( √ nL n ) , – By monotonicity arguments, if |V n � � n � ∈ B n (0 , √ nL n )) = I 1 0 ( i ) 2 ≥ L 2 P 0 n ( D n ∈ V n P 0 n ( D n P 0 D n I 0 / 0 ) ≥ I 0 / n n n i =1 – By the SLLN, �� � � � � n � 1 � � 0 ( i ) 2 − σ 2 P 0 D n � ≥ ǫ = η ǫ ( n ) → n →∞ 0 I � � n � n i =1 – Hence n ( σ 2 − ǫ ≥ L 2 P 0 n ( D n ∈ V n P 0 0 ) ≥ I n ) − η ǫ ( n ) I 0 / � n ( σ 2 − ǫ )) < |V n P 0 = 1 − I n ( V n ( 0 | ) − η ǫ ( n ) G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 5 Proof of 2 [AB 08] ( continued ) – By Markov ineq. � E 0 n ( |V n 0 | ) I n ( σ 2 − ǫ ))) ≤ P 0 n ( |V n 0 | > V n ( I � n ( σ 2 − ǫ )) V n ( – By classical results on the Voronoi tessellation 0 | ) = 1 E 0 n ( |V n = e − nR I λ n – By classical results n n 2 r n 2 r n π π 2 + 1) ∼ V n ( r ) = � n � n √ πn Γ( n 2 2 e – Hence E 0 n ( |V n 0 | ) I 2 log(2 πe ( σ 2 − ǫ )) → n →∞ 0 ∼ e − nR e − n � n ( σ 2 − ǫ )) V ( since R > − 1 2 log(2 πeσ 2 ) . G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 6 AWN DISPLACEMENT OF A POINT PROCESS Same framework as above concerning the p.p. µ n . { D n k } : i.i.d. sequence of centered displacements, independent of µ n . D n k = ( D n k (1) , . . . , D n k ( n )) : i.i.d. coordinates with a density f with well defined differential entropy � h ( D ) = − f ( x ) log( f ( x )) dx I R If D is N (0 , σ 2 ) , h ( D ) = 1 2 log(2 πeσ 2 ) G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 7 AWN UNDER TYPICALITY DECODING Aim: For all n , find a partition {C n R n , jointly stationary k } of I with µ n such that P 0 n ( D n ∈ C n 0 ) → n →∞ 0 p e ( n ) = I 0 / Theorem 1-wn 1. If R < − h ( D ) , there exists a sequence of point processes µ n (e.g. Poisson) with intensity e nR and a partition s.t. p e ( n ) → 0 , n → ∞ 2. If R > − h ( D ) , for all sequences of point processes µ n with intensity e nR , for all jointly stationary partitions, p e ( n ) → 1 , n → ∞ G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 8 Proof of 1 Let µ n be a Poisson p.p. with intensity e nR with R + h ( D ) < 0 . For all n and δ , let � � � � � � n � � − 1 � � R n : A n ( y (1) , . . . , y ( n )) ∈ I log f ( y ( i )) − h ( D ) δ = � < δ � � n i =1 P n 0 (( D n 0 (1) , . . . , D n 0 ( n )) ∈ A n δ ) → n →∞ 1 By the SLLN, I G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 9 Proof of 1 ( continued ) C n k contains – all the locations x which belong to the set T n k + A n δ and to no other set of the form T n l + A n δ ; – all the locations x that are ambiguous and which are closer to T n k than to any other point; – all the locations which are uncovered and which are closer to T n k than to any other point. G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 10 Proof of 1 ( continued ) µ n = µ n − ǫ 0 under I P 0 Let � n Basic bound: P 0 n ( D n ∈ C n P 0 n ( D n ∈ A n P 0 n ( D n 0 ∈ A n µ n ( D n 0 − A n 0 ) ≤ I I 0 / 0 / δ ) + I δ , � δ ) > 0) The first term tends to 0 because of the SLLN. For the second, use Slivnyak’s theorem to bound it from above by P ( µ n ( D n 0 − A n E ( µ n ( D n 0 − A n I δ ) > 0) ≤ I δ )) E ( µ n ( − A n δ )) = e nR | A n = I δ | G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 11 Proof of 1 ( continued ) But � � n � � n e n 1 P ( D n 0 ∈ A n i =1 log( f ( y ( i ))) dy 1 ≥ I δ ) = f ( y ( i )) dy = n i =1 A n A n δ δ � e n ( − h ( D ) − δ ) dy = e − n ( h ( D )+ δ ) | A n ≥ δ | A n δ so that | A n δ | ≤ e n ( h ( D )+ δ ) Hence the second term is bounded above by e nR e n ( h ( D )+ δ ) → n →∞ 0 since R + h ( D ) < 0 . G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 12 EXAMPLES Examples of A n δ sets for white noise with variance σ 2 : – Gaussian case: difference of two concentric L 2 n –balls of radius approximately √ nσ . – Symmetric exponential case: difference of two concentric L 1 n –balls of radius approximately n σ 2 . √ √ – Uniform case: n -cube of side 2 3 σ . G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 13 ADDITIVE STATIONARY AND ERGODIC DISPLACEMENT OF A POINT PROCESS Setting – Same framework as above concerning the p.p. µ n . – {D} k : i.i.d. sequence of centered, stationary and ergodic displacement processes, independent of the p.p.s. k = ( D k (1) , . . . , D k ( n )) with density f n on I – For all n , D n R n . G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 14 ADDITIVE STATIONARY AND ERGODIC DISPLACEMENT OF A POINT PROCESS ( continued ) D : with well defined differential entropy rate h ( D ) – H ( D n ) differential entropy of D n = ( D (1) , . . . , D ( n )) – h ( D ) defined by � 1 n →∞ − 1 nH ( D n ) = lim ln( f n ( x n )) f n ( x n ) dx n . h ( D ) = lim n n →∞ R n I Typicality sets � � � � � � � − 1 x n = ( x (1) , . . . , x ( n )) ∈ I R n : � � A n n log( f n ( x n )) − h ( D ) δ = � < δ . G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 15 ASEN UNDER TYPICALITY DECODING Theorem 1-sen 1. If R < − h ( D ) , there exists a sequence of point processes µ n (e.g. Poisson) with intensity e nR and a partition s.t. p e ( n ) → 0 , n → ∞ 2. If R > − h ( D ) , for all sequences of point processes µ n with intensity e nR , for all jointly stationary partitions, p e ( n ) → 1 , n → ∞ Proof: similar to that of the i.i.d. case. G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 16 COLORED GAUSSIAN NOISE EXAMPLE {D} regular stationary and ergodic Gaussian process with spectral density g ( β ) , covariance matrix Γ n : E [ D ( i ) D ( j )] = Γ n ( i, j ) = r ( | i − j | ) and � 2 π E [ D (0) D ( k )] = 1 e ikβ g ( β ) dβ. 2 π 0 G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
✬ ✩ 17 COLORED GAUSSIAN NOISE EXAMPLE ( continued ) – Differential entropy rate: � π h ( D ) = 1 1 . 2 eπ exp 2 ln ln( g ( β )) dβ 2 π − π – Typicality sets: � � � � 1 n x n − 1 + d ( n ) � � A n n ( x n ) t Γ − 1 δ = � < 2 δ, � with � π d ( n ) = 1 1 → n →∞ 0 . n ln(Det(Γ n )) − ln( g ( β )) dβ 2 π − π G´ eom´ etrie Stochastique et Th´ eorie de l’Information ✫ ✪ V. A. & F. B.
Recommend
More recommend