geo chemo mechanical studies for permanent storage of co
play

Geo-Chemo-Mechanical Studies for Permanent Storage of CO 2 in - PowerPoint PPT Presentation

Geo-Chemo-Mechanical Studies for Permanent Storage of CO 2 in Geologic Formations DE-FE0002386 Jrg Matter , Peter Kelemen, Ah-hyung Alissa Park, Greeshma Gadikota Columbia University in the City of New York Presentation Outline Benefit and


  1. Geo-Chemo-Mechanical Studies for Permanent Storage of CO 2 in Geologic Formations DE-FE0002386 Jürg Matter , Peter Kelemen, Ah-hyung Alissa Park, Greeshma Gadikota Columbia University in the City of New York

  2. Presentation Outline � Benefit and Overview � Results and Accomplishments • Mineral Characterization • Effect of Temperature, Pressure and Chemical Additives on Mineral Carbonation • Changes in Pore Structure and Morphology due to Carbonation • Reactive Cracking � Summary

  3. Benefit of the Program • Identify the program goals being addressed Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones surface area. • Project Benefits The project is to identify the effect of in-situ carbonation on the stability of geologic formations injected with CO 2 . The technology, when successfully demonstrated, will provide valuable information on the stability of the CO 2 geological storage. This technology contributes to the Carbon Storage Program’s effort of ensuring 99 percent CO 2 storage permanence in the injection zone(s).

  4. Project Overview: Goals and Objectives (i) Determine and compare the effect of temperature, partial pressure of CO 2 and chemical additives on carbonation of various minerals such as olivine, labradorite, anorthosite and basalt (ii) Quantify changes in pore structure and particle size before and after carbonation and analyze changes in morphological structure of the mineral due to carbonation (v) Determine the effect of pore fluid chemistry on mechanical behavior of rocks such as changes in hydrostatic compaction and strain on thermally cracked dunite saturated with CO 2 -saturated brines

  5. Carbon Storage in Geologic Formations • •

  6. Mineral Carbonation and Reactive Cracking Porosity ¡decreases ¡ ¡ Pore ¡spaces ¡increase ¡ Mineral ¡carbona4on ¡ with ¡carbona4on ¡ ¡ with ¡mineral ¡dissolu4on ¡ Safe ¡for ¡CO 2 ¡storage ¡as ¡ ¡ mechanical ¡strength ¡increases ¡ Increased ¡porosity ¡ Alignment ¡of ¡pores ¡ ¡ Cracking ¡of ¡ results ¡in ¡microfractures ¡ rocks ¡ If ¡overburden ¡and ¡ ¡ If ¡overburden ¡and ¡ ¡ caprock ¡seal ¡is ¡good, ¡ ¡ caprock ¡seal ¡is ¡not ¡good, ¡ ¡ ¡ h7p://gwsgroup.princeton.edu/SchererGroup/ ¡ then ¡cracking ¡is ¡ok ¡ is ¡there ¡a ¡problem? ¡ Salt_Crystalliza4on.html ¡ 1 ¡

  7. Worldwide Availability of Minerals Belvidere Mountain, Vermont Serpentine Tailings Basalt Anorthite (Labradorite) Magnesium-based Ultramafic Rocks Mineral Carbonation of Peridotite (Serpentine, Olivine) Photo by Dr. Jürg Matter at LDEO (2008)

  8. Olivine Carbonation Reaction Scheme CO 2 Hydration Magnesium Carbonate Phases Aqueous Phase CO 2(g) + H 2 O � H 2 CO 3(aq) High temperature H 2 CO 3(aq) � H +(aq) + HCO 3-(aq) Magnesite HCO 3-(aq) � H +(aq) + CO 32-(aq) Carbonate Formation 5 µm Mg 2+(aq) + CO 32-(aq) � MgCO 3 (s) Low temperature 2H + Mg 2+ Hydromagnesite 5 µm Si-rich ash layer PassivationLayer Nesquehonite Olivine Dissolution Mg 2 SiO 4(s) + 2H +(aq) � 2Mg 2+(aq) + H 4 SiO 4(aq) / SiO 2(s) + 2H 2 O 5 µm 9

  9. Minerals of Interest Mineral MgO CaO Fe 2 O 3 SiO 2 Al 2 O 3 Na 2 O K 2 O TiO 2 P 2 O 5 MnO Cr 2 O 3 V 2 O 5 LOI% Sum Ni % % Olivine 47.3 0.16 13.9 39.7 0.2 0.01 <0.01 <0.01 < 0.01 0.15 0.78 < 0.01 -0.7 101.5 0.27 Anorthosite 8.74 14.1 10.6 41.8 24.2 0.59 0.03 0.04 < 0.01 0.13 0.08 < 0.01 0.12 100.4 0.02 Labradorite 0.24 10.2 0.97 54.3 28.0 5.05 0.59 0.14 0.04 0.01 0.10 <0.01 0.32 99.8 N/A Basalt 4.82 8.15 14.6 51.9 13.4 2.91 1.09 1.74 0.32 0.21 0.10 0.06 0.27 99.6 0.04 Mineral Cleaning Protocol Determine particle size distribution of 1 Compositions of Mixture Minerals (wt%) sample; if no particles <5 um, proceed directly to vacuum oven drying , Anorthosite Basalt (Columbia otherwise follow the steps listed below River) Repeat 4 times 2 Add 45g of mineral to 10 µm sieve Anorthite 63.3 20.3 Place sieve in ultrasonic Albite 2.6 24.6 3 bath filled with D.I. water Diopside 3.4 7.9 Shake sieve in ultrasonic bath for 4 Enstatite - 8.3 5 minutes and fill fresh D.I. water Forsterite 14.1 - Filter and weigh the cleaned sample to 5 determine the yield Fayalite 10.4 - Place the cleaned mineral samples 6 in a vacuum oven at 70 o C for 24 hours

  10. Experimental Set-up for Mineral Carbonation Studies Post-Reaction Analysis (Wt%) Olivine (Mg 2 SiO 4 ) ICP-AES Total Carbon Analysis MgO 47.3 Total Inorganic Carbon Analysis CaO 0.2 Thermogravimetric Analysis X-Ray Diffraction Fe 2 O 3 13.9 SEM-EDS Al 2 O 3 0.2 Particle Size Analysis BET SiO 2 39.7 Key Questions What are the rate limiting steps? What is the role of reaction time, • Useful for simulating in-situ conditions P CO2 and temperature? • Estimate changes in physical structure What is the effect of additives such as such as porosity, surface area etc., NaCl and NaHCO 3 and why? - Speculations that NaHCO 3 is a “catalyst” • pH changes over time - Evidence of NaHCO 3 as a buffer and carbon carrier • Appropriate for determining long-term (~days) CO 2 -mineral-water interactions

  11. Effect of Reaction Time on Olivine Carbonation 100 10 Extent of Carbonation (%) 80 8 60 6 Volume (%) 185 o C, P CO2 = 139 atm, 40 1.0 M NaCl + 0.64 M 4 NaHCO 3 , 15 wt% solid, 800 rpm 20 Based on Ca and Mg 2 Reduction Based on Ca, Mg and Fe in fines ARC 0 0 0 1 2 3 4 5 6 1 10 100 1000 Time (hr) Particle Diameter ( � m) Cumulative Pore Volume (ml/g) -2 • Reaction rate increases significantly for up to 3 hours 10 • Significant reduction in the fine particles smaller than 10 � m and sharper distributions due to -3 carbonation 10 • Order of magnitude reduction in pore volume Unreacted Olivine 1 hr -4 • Surface area reduced from 3.77 m 2 /g to 1.25, 0.96 and 10 3 hr 5 hr 0.15 m 2 /g after 1, 3 and 5 hr reaction times 1 10 100 Pore Diameter (nm)

  12. Effect of CO 2 Partial Pressure on Olivine Carbonation 100 10 Extent of Carbonation (%) 80 8 Volume (%) 60 6 40 4 185 o C, 1.0 M NaCl + 0.64 20 TGA 2 M NaHCO 3 , 3 hours, TCA 15 wt% solid, 800 rpm ARC [1 hr] 0 0 50 75 100 125 150 175 200 1 10 100 1000 Partial Pressure of CO 2 (atm) Particle Diameter ( � m) Cumulative Pore Volume (ml/g) -2 10 • Increasing CO 2 partial pressure enhances carbonation upto 139 atm and does not enhance carbonation beyond 139 atm • As conversion is enhanced, particle size distribution becomes -3 10 narrower and pore volume decreases progressively. Unreacted • Surface area reduced from 3.77 m 2 /g to 3.20, 1.73, 0.96 and 64 atm 89 atm 0.80 m 2 /g for PCO2 = 64, 89, 139 and 164 atm, respectively. 139 atm -4 10 164 atm 1 10 100 Pore Diameter (nm)

  13. Effect of Temperature on Olivine Carbonation 100 10 Total P = 150 atm, 1.0 M NaCl + 0.64 M NaHCO 3 , 3 Extent of Carbonation (%) 80 hours, 15 wt% solid, 800 rpm 8 60 Volume (%) 6 40 4 20 2 TGA TCA ARC [1 hr] 0 0 80 100 120 140 160 180 200 1 10 100 1000 o C) Temperature ( Particle Diameter ( � m) Cumulative Pore Volume (ml/g) -2 10 • Increasing temperature enhances mineral dissolution and carbonation kinetics • As conversion is enhanced, particle size distribution becomes -3 10 narrower and pore volume decreases progressively. Unreacted Olivine • Surface area reduced from 3.77 m 2 /g to 2.01, 1.10, 1.07 and o C 90 o C 125 0.96 m 2 /g for 90, 125, 150 and 185 o C, respectively. -4 10 o C 150 o C 185 1 10 100 Pore Diameter (nm)

  14. Phase Transformation of Olivine (a) (a) Olivine Magnesite o C 185 o C 150 Relative Intensity o C 125 10 µm (b) O o C 90 (II) Mg Relative Intensity Unreacted C Magnesite 20 30 40 50 60 70 80 Si O 2 � (I) Mg Si-rich Phase 0.1 1 10 keV • Dominant formation of magnesite (MgCO 3 ) • Hydrous MgCO 3 phases were not formed in the range of 90-185 o C

  15. Effect of NaHCO 3 on Olivine Carbonation 100 -1 10 • Role of NaHCO 3 is that of a Extent of Carbonation (%) Limited Limited by [Mg 2+ ] Concentration (mol/kg) pH buffer and a carbon carrier. 80 -2 10 by [CO 32- ] 60 -3 10 • NaHCO 3 facilitates shifts in pH to 185 o C, 800 rpm favor mineral carbonation 40 -4 P CO2 = 139 atm, 10 15 wt% solid 20 -5 TGA 10 Mg-measured TCA Mg-equilibrium ASU [1 hr] Carbonate - equilibrium 0 -6 10 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 [NaHCO 3 ] (M) [NaHCO 3 ] (M) 10 Cumulative Pore Volume (ml/g) -2 10 • Surface area decreased from 3.77, 8 1.63, 1.51, 1.20, 1.15, 1.15 m2/g in Volume (%) 6 DI Water, 0.32 M, 0.48 M, 0.64 M, -3 10 1.0 M and 2.0 M NaHCO 3 4 Unreacted Olivine Deionized water • Progressive decrease in pore volume 0.32 M NaHCO3 2 0.48 M NaHCO3 and increase in particle size with -4 10 0.64 M NaHCO3 1.00 M NaHCO3 increasing carbonation 0 1 10 100 1000 1 10 100 Pore Diameter (nm) Particle Diameter ( � m)

Recommend


More recommend