generic continuous spectrum for multi dimensional quasi
play

Generic continuous spectrum for multi-dimensional quasi-periodic - PowerPoint PPT Presentation

Generic continuous spectrum for multi-dimensional quasi-periodic Schr odinger operators with rough potentials Joint work with Rui Han Fan Yang University of California, Irvine 35th Annual Western States Mathematical Physics Meeting


  1. Generic continuous spectrum for multi-dimensional quasi-periodic Schr¨ odinger operators with rough potentials Joint work with Rui Han Fan Yang University of California, Irvine 35th Annual Western States Mathematical Physics Meeting February 13, 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 1 / 19

  2. Main object Multi-dimensional discrete quasi-periodic Schr¨ odinger operators ∑ u m + f ( T n x ) u n , ( H α, x u ) n = | m − n | =1 f : T d → R is the potential function, T is the shift on T d with frequency vector α = ( α 1 , α 2 , ..., α d ) ∈ T d , x = ( x 1 , x 2 , ..., x d ) ∈ T d is the phase vector, m , n ∈ Z d and | m | = ∑ d i =1 m i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 2 / 19

  3. Main object Multi-dimensional discrete quasi-periodic Schr¨ odinger operators ∑ u m + f ( T n x ) u n , ( H α, x u ) n = | m − n | =1 f : T d → R is the potential function, T is the shift on T d with frequency vector α = ( α 1 , α 2 , ..., α d ) ∈ T d , x = ( x 1 , x 2 , ..., x d ) ∈ T d is the phase vector, m , n ∈ Z d and | m | = ∑ d i =1 m i . d = 1 ⇒ many (sharp) results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 2 / 19

  4. Main object Multi-dimensional discrete quasi-periodic Schr¨ odinger operators ∑ u m + f ( T n x ) u n , ( H α, x u ) n = | m − n | =1 f : T d → R is the potential function, T is the shift on T d with frequency vector α = ( α 1 , α 2 , ..., α d ) ∈ T d , x = ( x 1 , x 2 , ..., x d ) ∈ T d is the phase vector, m , n ∈ Z d and | m | = ∑ d i =1 m i . d = 1 ⇒ many (sharp) results d > 1 ⇒ very few results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 2 / 19

  5. Excluding point spectrum for one-dimensional operators ( H α, x u ) n = u n +1 + u n − 1 + f ( x + n α ) u n . Repetitions in potential leads to empty point spectrum: Developed by Gordon in 1976 H¨ older continuous potential: Avila-You-Zhou (sharp results for Almost Mathieu operator) Generic continuous potential: Boshernitzan-Damanik (one-dimensional operator with multi-frequency) Sturmian Hamiltonian: many authors Singular potential: Simon (Maryland model), Jitomirskaya-Liu (sharp results for Maryland model), Jitomirskaya-Y (meromorphic potential) Measurable potential: Gordon (one-dimensional operator with multi-frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 3 / 19

  6. Excluding point spectrum for multi-dimensional operators General continuous potential: Simon’s Wonderland theorem implies empty point spectrum for generic frequencies. For a long time, there is no arithmetically quantitative result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 4 / 19

  7. Excluding point spectrum for multi-dimensional operators General continuous potential: Simon’s Wonderland theorem implies empty point spectrum for generic frequencies. For a long time, there is no arithmetically quantitative result. H¨ older continuous potential: Damanik: one frequency is sufficiently Liouville, the other frequencies are rational, for any x , H α, x has no point spectrum Breakthrough by Gordon: when all the frequencies are sufficiently Liouville, for any x , H α, x has no ℓ 1 ( Z d ) solution. Gordon-Nemirovski: when all the frequencies are sufficiently Liouville, for any x , H α, x has no point spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 4 / 19

  8. Theorem (Boshernitzan-Damanik, 2007) Let ( H α, x u ) n = u n +1 + u n − 1 + f ( x + n α ) u n , be a one-dimensional quasi-periodic operator with multi-dimensional frequency α ∈ T d . Then for any frequency, for generic continuous potential f , H α, x has no point spectrum for a.e. x ∈ T d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 5 / 19

  9. Our main result for continuous potentials Theorem Assume there exists an infinite sequence Q = { τ ( n ) = ( τ ( n ) 1 , τ ( n ) 2 , ..., τ ( n ) d ) } such that τ ( n ) · · · τ ( n ) ∥ τ ( n ) 1 d lim α i ∥ T = 0 (1) i τ ( n ) n →∞ i for any i = 1 , 2 , ..., d . Then for generic continuous potential f , the multi-dimensional operator H α, x has no point spectrum for a.e. x ∈ T d . Remark d = 2, (1) holds for a.e. ( α 1 , α 2 ). Actually (1) is equivalent to ( α 1 , α 2 ) are not both of bounded type. d ≥ 3, using Borel-Cantelli’s Lemma, (1) holds on a zero measure set of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 6 / 19

  10. Our main result for measurable potentials Theorem Let the potential f be measurable, then for generic α ∈ T d , H α, x has no point spectrum for a.e. x . Remark: This theorem extends a result of Gordon (2016) for d = 1 to the multi-dimensional setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 7 / 19

  11. Rokhlin-Halmos Lemma Let T be an invertible measure-preserving transformation on a measure space ( X , M , µ ) with µ ( X ) = 1. We assume T is aperiodic. Then for any ϵ > 0 and n ∈ N , there exists an E ∈ M such that: the sets E , TE , ..., T n − 1 E are pairwise disjoint; µ ( ∪ n − 1 j =0 T j E ) > 1 − ϵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 8 / 19

  12. Sketch of proof for continuous potentials j =1 τ ( n ) Notations: for 1 > δ > 0, let Γ n = (2 d + δ ) ∏ d . Denote j x ⋆ y = ( x 1 y 1 , x 2 y 2 , ..., x d y d ), x , y ∈ R d . Proof: By (1), for any k ∈ N , take n k so that Γ n k α i ∥ < 1 ∥ τ ( n k ) for any i = 1 , 2 , ..., d . i τ ( n k ) k 2 i Step 1 By Rokhlin-Halmos Lemma, there exists O n k so that { O n k + j ⋆ α } ∥ j ∥ ∞ ≤ ( k +1)Γ nk are pairwise disjoint , and 1 − 2 − k − 1 | O n k | > (2( k + 1)Γ n k + 1) d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 9 / 19

  13. Step 2 Cut O n k into { K n k , l } l =1 , 2 ,..., s nk , so that s nk 1 − 2 − k ∑ | K n k , l | > (2( k + 1)Γ n k + 1) d , l =1 and diam ( K n k , l ) < 1 k . Let I n k = { m ∈ Z d : 0 ≤ m i ≤ τ ( n k ) − 1 for any i = 1 , 2 , ..., d } and define i K n k , l + m ⋆ α + j ⋆ τ ( n k ) ⋆ α. ∪ U n k , l , m = ( nk ) | j i |≤ k Γ nk /τ i Step 3 U n k , l , m satisfies √ diam ( U n k , l , m ) < 2 d +1 . k for 1 ≤ l ≤ s n k , m ∈ I n k , U n k , l , m are pairwise disjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 10 / 19

  14. Let F n k = { f ∈ C ( T d ) : f is constant on each U n k , l , m } , and define G n k = { g ∈ C ( T d ) : there exists f ∈ F n k s . t . ∥ g − f ∥ 0 < 1 2 k − 2 d + γ 2 d + δ Γ nk } . Step 4 k ≥ t G n k is a generic set of C ( T d ). G = ∩ ∪ t ≥ 1 If f ∈ G , then there exists subsequence { ˜ n k } of { n k } such that f ∈ G ˜ n k . For any k > 4 d − 1 + 2 ∥ f ∥ 0 , let ∪ T ˜ n k = ( K ˜ n k , l + j ⋆ α ) . 1 ≤ l ≤ s ˜ nk , ∥ j ∥ ∞ ≤ ( k − 1)Γ ˜ nk Step 5 For x ∈ T ˜ n k , we have: n k ) ⋆ α ) − f ( x ) | < (4 d − 1 + 2 ∥ f ∥ 0 ) − 2 d + γ | f ( x + j ⋆ τ (˜ 2 d + δ Γ ˜ nk . max (˜ nk ) j ∈ Z d , | j i |≤ Γ ˜ nk /τ i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 11 / 19

  15. Step 6 T ˜ n k satisfies: ) d ( (2 k − 2)Γ ˜ n k + 1 (1 − 2 − k ) , | T ˜ n k | ≥ (2 k + 2)Γ ˜ n k + 1 thus ∑ | T c ∑ n k | = (1 − | T ˜ n k | ) < ∞ . ˜ k k Therefore, a.e. x ∈ T d belongs to infinitely many T ˜ n k . For such full measure set of x , combining Step 5 and the following Theorem (Gordon-Nemirovski), H α, x has no point spectrum. □ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Irvine Generic continuous spectrum February 13, 2017 12 / 19

Recommend


More recommend