general procedure of fe software fe software procedure
play

GENERAL PROCEDURE OF FE SOFTWARE FE SOFTWARE PROCEDURE PRE - PowerPoint PPT Presentation

GENERAL PROCEDURE OF FE SOFTWARE FE SOFTWARE PROCEDURE PRE PROCESSING SOLVING POST PROCESSING SOLVING GENERAL PROCEDURE ENGINEERING MATHEMATICS (PDE) FEM DERIVATION COMPUTER PROGRAMMING CODE VALIDATION FREE VIBRATION


  1. GENERAL PROCEDURE OF FE SOFTWARE

  2. FE SOFTWARE PROCEDURE PRE – PROCESSING SOLVING POST – PROCESSING

  3. SOLVING GENERAL PROCEDURE ENGINEERING MATHEMATICS (PDE) FEM DERIVATION COMPUTER PROGRAMMING CODE VALIDATION

  4. FREE VIBRATION   2 2 2 d x d y d z                   m k x y z 0     2   2 2 2 K M 0   dt dt dt      mx kx 0 ENGINEERING MATHEMATICS FINITE ELEMENT METHOD C C ELEMENT CONDUCTION MATRIX: C DO 100 I=1,3 DO 100 J=1,3 AKC(I,J) = 0. DO 110 K=1,2 AKC(I,J) = AKC(I,J) + BT(I,K)*B(K,J) 110 CONTINUE AKC(I,J) = TK*AREA*THICK*AKC(I,J) 100 CONTINUE DO 120 I=1,3 DO 120 J=1,3 AKE(I,J) = AKE(I,J) + AKC(I,J) 120 CONTINUE C C ELEMENT CONVECTION MATRICES: C IF(LTYPE(IE,3).NE.1) GO TO 300 FAC = H*AREA/12. DO 230 I=1,3 DO 230 J=1,3 AKH(I,J) = FAC 230 CONTINUE DO 240 I=1,3 AKH(I,I) = 2.*FAC 240 CONTINUE FAC = H*AREA*TI/3. DO 250 I=1,3 QH(I) = FAC 250 CONTINUE DO 260 I=1,3 QE(I) = QE(I) + QH(I) DO 260 J=1,3 AKE(I,J) = AKE(I,J) + AKH(I,J) 260 CONTINUE 300 CONTINUE COLOR GRAPHICS COMPUTER PROGRAMMING

  5. FREE VIBRATION ANALYSIS ENGINEERING MATHEMATICS (PDE)  Free vibration system Newton’s 2 nd law of motion m     F ma mx x k    mx kx 0 x(t)

  6. FREE VIBRATION ANALYSIS FEM DERIVATION  Finite element equation    mx kx 0              M K 0 Stiffness Displacement Mass matrix ( 3 dimensions ) matrix

  7. FREE VIBRATION ANALYSIS FEM DERIVATION  Harmonics motion Applitude,      ( ) t sin( t ) x time, t    2 f Period, T = 1/ f  Finite element equation for free vibration             2 K M 0   Circular frequency Mode shapes

  8. FREE VIBRATION ANALYSIS

  9. FREE VIBRATION ANALYSIS

  10. FREE VIBRATION ANALYSIS COMPUTER PROGRAMMING Example in FORTRAN

  11.       1 0 0 0          T      1 0 0 0   K B C B V       1 0 0 0 e     1 2   E    0 0 0 0 0 C   2     (1 )(1 2 )     1 2   0 0 0 0 0   2     1 2   0 0 0 0 0   2   b 0 0 b 0 0 b 0 0 b 0 0 1 2 3 4   0 c 0 0 c 0 0 c 0 0 c 0   1 2 3 4   0 0 d 0 0 d 0 0 d 0 0 d 1     1 2 3 4   B 6 V  c b 0 c b 0 c b 0 c b 0  1 1 2 2 3 3 4 4   0 d c 0 d c 0 d c 0 d c 1 1 2 2 3 3 4 4       d 0 b d 0 b d 0 b d 0 b 1 1 2 2 3 3 4 4

  12. FREE VIBRATION ANALYSIS CODE VALIDATION  Exact Solution  Numerical Solution (FDM , FEM, FVM, etc.)  Commercial Software (ANSYS, NASTRAN, etc.)  Experimental Result 1.0 0.6  10 Exact solution Present Yoon, et al. 0.4 0.8 Malan et al. Present Present 8 Sampaio 0.2 0.6 6 v Nu u 0.0 0.4 4 -0.2 0.2 2 -0.4 0.0  0 t -0.6 0.0 0.2 0.4 0.6 0.8 1.0 0 40 50 60 70 10 20 30 0 90 270 360 180

  13. SOLVING HEAT TRANSFER ANALYSIS FE ANALYSIS MUST SATISFY ENERGY EQUATION FOURIER’S LAW

  14. HEAT TRANSFER                                     C C T T K K K K K K T T       q q q T c c h h r r         y x z Q c                                       x y z t Q Q Q Q Q Q Q Q Q Q c c Q Q q q h h r r ENGINEERING MATHEMATICS FINITE ELEMENT METHOD C C ELEMENT CONDUCTION MATRIX: C DO 100 I=1,3 DO 100 J=1,3 AKC(I,J) = 0. DO 110 K=1,2 AKC(I,J) = AKC(I,J) + BT(I,K)*B(K,J) 110 CONTINUE AKC(I,J) = TK*AREA*THICK*AKC(I,J) 100 CONTINUE DO 120 I=1,3 DO 120 J=1,3 AKE(I,J) = AKE(I,J) + AKC(I,J) 120 CONTINUE C C ELEMENT CONVECTION MATRICES: C IF(LTYPE(IE,3).NE.1) GO TO 300 FAC = H*AREA/12. DO 230 I=1,3 DO 230 J=1,3 AKH(I,J) = FAC 230 CONTINUE DO 240 I=1,3 AKH(I,I) = 2.*FAC 240 CONTINUE FAC = H*AREA*TI/3. DO 250 I=1,3 QH(I) = FAC 250 CONTINUE DO 260 I=1,3 QE(I) = QE(I) + QH(I) DO 260 J=1,3 AKE(I,J) = AKE(I,J) + AKH(I,J) 260 CONTINUE 300 CONTINUE COLOR GRAPHICS COMPUTER PROGRAMMING

  15. SOLVING STRUCTURAL ANALYSIS FE ANALYSIS MUST SATISFY EQUILIBRIUM EQUATION STRESS – STRAIN REL. STRAIN – DISPLACEMENT REL.

  16. SOLID MECHANICS ENGINEERING MATHEMATICS FINITE ELEMENT METHOD DO 20 I=1,3 DO 30 J=1,6 B(I,J) = B(I,J)/(2.*AREA) BT(J,I) = B(I,J) 30 CONTINUE 20 CONTINUE C C ELASTICITY MATRIX: C FAC = ELAS/(1.-PR*PR) C(1,1) = FAC C(1,2) = FAC*PR C(1,3) = 0. C(2,1) = C(1,2) C(2,2) = C(1,1) C(2,3) = 0. C(3,1) = 0. C(3,2) = 0. C(3,3) = FAC*(1.-PR)/2. C C ELEMENT STIFFNESS MATRIX: C DO 100 I=1,3 DO 100 J=1,6 DUMA(I,J) = 0. DO 200 K=1,3 DUMA(I,J) = DUMA(I,J) + C(I,K)*B(K,J) 200 CONTINUE 100 CONTINUE COMPUTER PROGRAMMING COLOR GRAPHICS

  17. SOLVING FLUID DYNAMICS ANALYSIS FE ANALYSIS MUST SATISFY CONSERVATION OF MASS CONSERVATION OF MOMENTUM CONSERVATION OF ENERGY

  18. LOW-SPEED INCOMPRESSIBLE FLOW ENGINEERING MATHEMATICS FINITE ELEMENT METHOD DO 110 I=1,6 DO 110 J=1,3 DO 110 K=1,3 DO 110 L=1,6 CXX = CXX + A(IA,I)*B(I,J)*A(IB,L)*B(L,K)*G(J,K) CYY = CYY + A(IA,I)*C(I,J)*A(IB,L)*C(L,K)*G(J,K) CXY = CXY + A(IA,I)*C(I,J)*A(IB,L)*B(L,K)*G(J,K) CYX = CYX + A(IA,I)*B(I,J)*A(IB,L)*C(L,K)*G(J,K) 110 CONTINUE SXX(IA,IB) = 2.*ANEW*CXX + ANEW*CYY SXY(IA,IB) = ANEW*CXY SYX(IA,IB) = ANEW*CYX SYY(IA,IB) = ANEW*CXX + 2.*ANEW*CYY 100 CONTINUE C C COMPUTE [HX] AND [HY] MATRICES: C DO 150 IA=1,3 DO 150 IB=1,6 CX = 0. CY = 0. DO 160 I=1,6 DO 160 J=1,3 CX = CX + A(IB,I)*B(I,J)*G(J,IA) CY = CY + A(IB,I)*C(I,J)*G(J,IA) 160 CONTINUE HX(IA,IB) = CX/DEN HY(IA,IB) = CY/DEN 150 CONTINUE COMPUTER PROGRAMMING COLOR GRAPHICS

  19. HIGH-SPEED COMPRESSIBLE FLOW              n      *    M U t  C uU R  {U} {E} {F} 0 i i u    t x y  2     t u                u v n K u U R         k us j i us 2        2    u u p uv          {U} ;{E} ; {F}      2    2  t u v uv v p             n K p R                      k ps ps u pu v pv 2 ENGINEERING MATHEMATICS FINITE ELEMENT METHOD DO 110 I=1,6 DO 110 J=1,3 DO 110 K=1,3 DO 110 L=1,6 CXX = CXX + A(IA,I)*B(I,J)*A(IB,L)*B(L,K)*G(J,K) CYY = CYY + A(IA,I)*C(I,J)*A(IB,L)*C(L,K)*G(J,K) CXY = CXY + A(IA,I)*C(I,J)*A(IB,L)*B(L,K)*G(J,K) CYX = CYX + A(IA,I)*B(I,J)*A(IB,L)*C(L,K)*G(J,K) 110 CONTINUE SXX(IA,IB) = 2.*ANEW*CXX + ANEW*CYY SXY(IA,IB) = ANEW*CXY SYX(IA,IB) = ANEW*CYX SYY(IA,IB) = ANEW*CXX + 2.*ANEW*CYY 100 CONTINUE C C COMPUTE [HX] AND [HY] MATRICES: C DO 150 IA=1,3 DO 150 IB=1,6 CX = 0. CY = 0. DO 160 I=1,6 DO 160 J=1,3 CX = CX + A(IB,I)*B(I,J)*G(J,IA) CY = CY + A(IB,I)*C(I,J)*G(J,IA) 160 CONTINUE HX(IA,IB) = CX/DEN HY(IA,IB) = CY/DEN 150 CONTINUE COMPUTER PROGRAMMING COLOR GRAPHICS

Recommend


More recommend