gasification pyrolysis and combustion technologies as
play

Gasification, pyrolysis and combustion technologies as process - PowerPoint PPT Presentation

Gasification, pyrolysis and combustion technologies as process alternatives for woody biomass valorization Juan Camilo Solarte-T oro 1 , Jose Andrs Gonzalez-Aguirre 1 , Carlos Andrs Garca-Velsquez 2 , Carlos Ariel Cardona-Alzate 1* 1


  1. Gasification, pyrolysis and combustion technologies as process alternatives for woody biomass valorization Juan Camilo Solarte-T oro 1 , Jose Andrés Gonzalez-Aguirre 1 , Carlos Andrés García-Velásquez 2 , Carlos Ariel Cardona-Alzate 1* 1 Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Caldas, Zip Code: 170003, Colombia. 2 Department of bio-based materials, Maastricht University, Maastricht, P .O. Box 616 6200 MD, Netherlands. *Corresponding author email: ccardonaal@unal.edu.co Research Group Chemical, Catalytic, and Biotechnological process 1

  2. Outli ne 1.Introduction 2.Methodology a) Experimental procedure b) Simulation approach 3.Results a) Experimental results b) Energy and Exergy metrics analysis c) Economic assessment 4.Conclusions 5.References Research Group Chemical, Catalytic, and Biotechnological process 2 2 2

  3. 1. Introduction In order to meet the global and local bioenergy needs, to address a sustainable forest management and promote environmentally friendly practices, woody biomass turns into a highly valued raw material able to be cropped sustainably in large quantities around the world. Figure 1. Woody biomass Cycle (IEA Bioenergy, 2018) Research Group Chemical, Catalytic, and Biotechnological process 3 3 3

  4. 1. Introduction Energy from Biomass 5,10% 5,10% 24,49% 4 % of industrialized countries energy 65,31% Woody Biomass Municipal Solid Waste Agricultural Waste Landfill Gases Figure 2. Energy share supplied by renewable resources Commercial Industrial Domestic Research Group Chemical, Catalytic, and Biotechnological process 4 4 4

  5. 1. Introduction Combustion Pyrolysis Gasifjcation Bio-char / Bio-oil / Fuel Heat Fuel Gas / Gas Boilers and Heat Metallurgy, engines, Gas stoves Gas turbine, turbine steam turbine Temperature: 500 °C – Fast Temperature: 800 – 850 Excess of oxygen : 5-8% 400 °C – Slow °C vol Residence time : 1 second – Particle size: 0.5 – 1 cm Temperature: <900°C Fast Oxygen content: ≈ 35 Particle size: <50mm 10 – 20 seconds - Slow % Research Group Chemical, Catalytic, and Biotechnological process 5 5 5

  6. 1. Introduction Objective Economic Analysis To evaluate and compare gasification, combustion, and pyrolysis technologies as Environmental Analysis process alternatives for woody biomass valorization from energy, economic and environmental perspective using Pinus Patula as case of study Energy Analysis Research Group Chemical, Catalytic, and Biotechnological process 6 6 6

  7. 2. Methodology 1. Chemical characterization 1. Processes description Process Quantitative simulation and 2. Proximate analysis analysis and energy, 2. Energy indicators experimental economic and procedure. environmental 3. Ultimate analysis assessment. 3. Economic assessment 4. Gasification process Figure 4. Steps to evaluate the thermochemical conversion of Pinus Patula . Figure 3. Steps to perform the experimental characterization of Pinus Patula Research Group Chemical, Catalytic, and Biotechnological process 7 7 7

  8. 2. Methodology 1. Chemical 2. Ultimate analysis 2. Proximate analysis characterization Moisture Carbon Volatile matter • ASTM E1756–08(2015) • ASTM E777–17(2017) • ASTM E872-82(2013) Extractives Hydrogen • ASTM E1690-08(2016) • ASTM E777-17(2017) Holocellulose Fixed carbon Nitrogen • ASTM D1104-56(1978) • ASTM E870(2013) • ASTM E778-15(2015) Acid insoluble lignin Sulfur • TAPPI 222 om-02 • ASTM E775-15(2015) Ash Ash • ASTM E1755 - 01(2015) Oxygen • ASTM E1755 - 01(2015) • ASTM E870 - 82(2013) Figure 5. Standard methods used to characterize Pinus Patula Research Group Chemical, Catalytic, and Biotechnological process 8 8

  9. 2. Methodology 4. Pinus Patula gasifjcation. A) B) Gasifjer Raw material acquisition Raw material pretreatment Gas Analyzer system Rotameter Gasifier maintenance Figura 20. Partes de constante mantenimiento en el equipo de gasifjcación. A) Ventiladores de gas B) Rejilla de retención Thermocouples Figura 18. Hojas de palma de aceite empleadas en el de sólidos y alquitranes. (Elaboración propia) Pilot scale gasification proceso de gasifjcación. Ubicación: Puerto salgar, Figura 19. Chips de palma de aceite empleados en el Colombia (latitud 5°42'46.2" norte y longitud 74°34'56.4" proceso de gasifjcación (Elaboración propia) . Oeste) (Foto: Elaboración propia) . Research Group Chemical, Catalytic, and Biotechnological process 9

  10. 2. Methodology Process flow diagrams of Gasification, Combustion and Pyrolysis processes Figure 6. Gasification process flow diagram Research Group Chemical, Catalytic, and Biotechnological process 10

  11. 2. Methodology Process flow diagrams of Gasification, Combustion and Pyrolysis processes Process flow diagrams of Gasification, Combustion and Pyrolysis processes Figure 7. Combustion process flow diagram Research Group Chemical, Catalytic, and Biotechnological process 11

  12. 2. Methodology Process flow diagrams of Gasification, Combustion and Pyrolysis processes Figure 8. Pyrolysis process flow diagram Research Group Chemical, Catalytic, and Biotechnological process 12

  13. 2. Methodology Energy, Economic and environmental assessment Aspen plus v9.0 (Aspen technologies Inc. USA). Process simulation and energy analysis • Aspen blocks, process conditions and modeling of the process Mass flow 250 ton/day (d.b). applying kinetic models and stoichiometric approaches. Aspen Process Economic Analyzer v9.0 (Aspen technologies Inc. USA). Economic analysis • Economic metrics calculation for each process (e.g., NPV, IRR, Economic Colombian context. PO). This analysis was carried out using the software Aspen Straight line depreciation method, project plant Process Economic Analyzer v.9.0. life 10 years, Tax rate 15% y interest rate: 25% (Banco de la república, 2016) . Research Group Chemical, Catalytic, and Biotechnological process 13

  14. 3. Results Pinus Patula characterization and fuel properties Lignocellulosic composition Table 1 . Results of Pinus Patula characterization and comparison with other Woody feedstocks applied in thermochemical processes. Content (% w/w, d.b.) Pinus Cofgee Cut Wood Bark Oil palm Analysis Spruce Wood* Patula Stems (av.)* fronds Moisture 9.21 8.7 8.8 9.68 7.6 Extractives 11.0 14.18 N.R 15.59 N.R Cellulose 44.78 40.39 24.8 41.98 50.8 Hemicellulo 23.75 34.01 29.8 23.12 21.2 se Lignin 20.22 10.13 43.8 17.32 27.5 Ash 0.25 1.27 1.6 1.99 0.5 (d.b: dry basis, av: average) * extractive free basis Research Group Chemical, Catalytic, and Biotechnological process 14

  15. 3. Results Pinus Patula characterization and fuel properties Proximate analysis. Table 2 . Results of the proximate analysis of Pinus Patula and comparison with other Woody feedstocks used in thermochemical proceses Content (% w/w, d.b.) Cofgee Cut Wood Bark Oil palm Spruce Analysis Pinus Patula Stems (av.)* fronds Wood* Volatile Matter 82.14 82.15 66.6 83.47 70.2 Fixed Carbon 17.64 16.78 31.8 14.73 28.3 Ash 0.23 1.07 1.6 1.80 1.5 High Heating Value 19.97 19.32 20.4 18.56 19.7 (MJ/kg) (d.b: dry basis, av: average) Research Group Chemical, Catalytic, and Biotechnological process 15

  16. 3. Results Pinus Patula characterization and fuel properties Elemental analysis Pinus Patula Table 3 . Elemental analysis results of Pinus Patula properties as fuel material Content (% w/w, d.b.) Cofgee Cut Element Pinus Patula Spruce Wood Stems Carbon 48.96 48.35 51.9 H/C = 1.47 (1.4 – 1.6) Hydrogen 5.97 5.93 6.1 O/C = 0.68 (0.6 – 1.2) Oxygen 44.51 44.21 40.9 VM/FC = 4.66 (3.0 – 4.0) Nitrogen N.R N.R 0.3 Sulfur N.R N.R N.R Empiric C 6 H 8.83 O 4.09 formula (db dry basis)VM: Volatile matter FC: fjxed carbon Research Group Chemical, Catalytic, and Biotechnological process 16

  17. 3. Results Mass and Energy indicators of the thermochemical processes Table 4 . Yields of the thermochemical conversión of Pinus Patula Mass yield (g/g) Carbon conversión Process Ashes Biochar Gases Bio-oil/Tars efficiency (%) Combustion 0.021 N.A 3.56 N.A N.A Gasification 0.01 5.93 2.22 0.27 94.98 Pyrolysis 0.005 0.13 0.31 0.48 75.63 N.A: Not apply Table 5 . Energy indicators of the thermochemical conversión of Pinus Patula Energy efficiency Process Exergy losses (kW) (%) Combustion 39.9 194.85 Gasification 55.1 122.57 Pyrolysis 48.5 201.31 Research Group Chemical, Catalytic, and Biotechnological process 17

  18. 3. Results Sankey diagrams of the thermochemical processes Research Group Chemical, Catalytic, and Biotechnological process 18

  19. 3. Results Economic evaluation of the thermochemical processes NPV [Million USD/year] Contribution of economic parameters in each thermochemical process 2 VPN over project lifetime 1,8 3,00 1,6 2,00 1,4 1,00 ) r a 1,2 0,00 e /y D -1,00 1 S U (M -2,00 0,8 Pyrolysis s -3,00 t s Gasificatio o 0,6 l C -4,00 n a 0,4 t -5,00 o T -6,00 0,2 -2 0 2 4 6 8 10 0 Project Lifetime [years] Figure 10. Share of costs for each thermochemical process Figure 9 Net present value of the project for ten years of lifetime Research Group Chemical, Catalytic, and Biotechnological process 19

Recommend


More recommend