game theory for homeland security
play

Game Theory for Homeland Security: Lessons Learned from Deployed - PowerPoint PPT Presentation

Game Theory for Homeland Security: Lessons Learned from Deployed Applications Chr hris is Kiekint Kiekintveld eld Janus anusz Mar arec ecki ki UTEP UT IBM Watson on Milind ilind Tambe ambe US USC Teamcor eamcore Outline


  1. Game Theory for Homeland Security: Lessons Learned from Deployed Applications Chr hris is Kiekint Kiekintveld eld Janus anusz Mar arec ecki ki UTEP UT IBM Watson on Milind ilind Tambe ambe US USC Teamcor eamcore

  2. Outline � Deployed real world applications � LAX, FAMS, TSA, … � Research highlights � Uncertainty: Algorithms for Bayesian games � Scaling Up: Efficient algorithms for massive games � … � Transitioning from theory to practice � Algorithms: AAMAS(06,07,08,09,10); AAAI (08,10) � Behavioral game theory : AAMAS’09, AI Journal (2010) � Applications: AAMAS Industry track (08,09), AI Magazine (09), Interfaces (10), Informatica (10)

  3. Many Targets Few Resources

  4. Many Targets Few Resources How to assign limited resources to defend the targets?

  5. ARMOR: Deployed at LAX August 2007 � LAWA: Los Angeles World Airports police � Randomized checkpoints & K9 allocation? � Assistant for randomized monitoring over routes � Reward matrices: Embed with LAX, get data ARMOR-Checkpoints ARMOR-K9

  6. More Real-World Deployments � IRIS for Federal Air Marshals : Deployed Oct 2009 � GUARDS for TSA : Pittsburgh deployed and in full use � All airports Fall’2010? � Coast Guard (Boston) : Getting started next IRIS GUARDS PROTECT

  7. Key Issues � Unpredictable schedules � Intelligent, adaptive adversaries � Surveillance, insider threats � Diverse targets � Varying consequences, vulnerabilities � Non-uniform randomization � Uncertainty about attackers � Multiple groups with different capabilities � Uncertain preferences and motivations

  8. Bayesian Stackelberg Games � Limited resources, targets different weights � Stackelberg : Security commits, adversary responds � Bayesian : Uncertain adversary types � Optimal security allocation: Weighted random � Strong Stackelberg Equilibrium (Bayesian) � NP-hard Adversary Terminal Terminal #1 #2 Terminal #1 5, -3 -1, 1 Police Terminal #2 -5, 5 2, -1

  9. ARMOR Canine: Interface

  10. Efficient Algorithms Challenges : Combinatorial explosions due to: � Adversary types : Adversary strategy combination � Defender strategies : Allocations of resources to targets � E.g. 100 flights, 10 FAMS � Attacker strategies : Attack paths � E.g. Multiple attack paths to targets in a city

  11. Scale-up: SCALE-UP Scale-up: Scale-up: Exact or Type of Algorithm Domain Defender Attacker Attacker Approx equilibrium structure actions actions types exploited Low Low Medium None Approx SSE ASAP ARMOR 2007 DOBSS Low Low Medium None Exact SSE ARMOR 2008 Low Low Medium None Exact rationality, COBRA 2009 observation Medium Low Low High ( Security Exact SSE ORIGAMI IRIS-I 2009 game, 1 target ) Medium Low Low High (Security Approx SSE ERASER IRIS-II 2009 game, 2 targets) Exact SSE ASPEN Medium Low Low Med (Security IRIS-III 2010 game, N targets) Approx SSE RANGER Medium Medium Low High (zero- 2010 sum, graph)

  12. ARMOR: Multiple Adversary Types � NP-hard � Previous work: Linear programs using Harsanyi transformation P=0.3 P=0.5 P=0.2 Term #1 Term #2 Term #1 Term #2 Term #1 Term #2 Term#1 5, -3 -1, 1 Term#1 2, -1 -3, 4 Term#1 4, -2 -1,0.5 Term#2 -5, 5 2, -1 Term#2 -3, 1 3, -3 Term#2 -4, 3 1.5, -0.5 111 121 112 211 … … … 222 Terminal 3.3,-2.2 2.3,… #1 Terminal -3.8,2.6 …,… #2

  13. Multiple Adversary Types: Decomposition for Bayesian Stackelberg Games � Mixed-integer programs � No Harsanyi transformation

  14. ARMOR: Run-time Results Armor I Armor II Armor I • Multiple LPs (Conitzer & Sandholm’06) • MIP-Nash (Sandholm et al’05) • Sufficient for LAX

  15. Scale-up: SCALE-UP Scale-up: Scale-up: Exact or Type of Algorithm Domain Defender Attacker Attacker Approx equilibrium structure actions actions types exploited Low Low Medium None Approx SSE ASAP ARMOR 2007 DOBSS Low Low Medium None Exact SSE ARMOR 2008 Low Low Medium None Exact rationality, COBRA 2009 observation Medium Low Low High ( Security Exact SSE ORIGAMI IRIS-I 2009 game, 1 target ) Medium Low Low High (Security Approx SSE ERASER IRIS-II 2009 game, 2 targets) Exact SSE ASPEN Medium Low Low Med (Security IRIS-III 2010 game, N targets) Approx SSE RANGER Medium Medium Low High (zero- 2010 sum, graph)

  16. Federal Air Marshals Service International Flights from Flights (each day) Chicago O’Hare ~27,000 domestic flights ~2,000 international flights Estimated 3,000-4,000 air marshals Massive scheduling problem: How to assign marshals to flights?

  17. IRIS Scheduling Tool

  18. IRIS Scheduling Tool Flight Information Game Resources Model Risk Information Randomized Solution Deployment Algorithm Schedule

  19. IRIS: Large Numbers of Defender Strategies Strategy ¡1 ¡ Strategy ¡2 ¡ Strategy ¡3 ¡ Strategy ¡1 ¡ FAMS: Joint Strategies Strategy ¡2 ¡ Strategy ¡3 ¡ Strategy ¡4 ¡ Strategy ¡5 ¡ Strategy ¡6 ¡ 4 Flight tours 6 Schedules 2 Air Marshals 17 trillion Strategy ¡1 ¡ Strategy ¡2 ¡ Strategy ¡3 ¡ 100 Flight tours Schedules: Strategy ¡1 ¡ 10 Air Marshals Strategy ¡2 ¡ ARMOR Strategy ¡3 ¡ out of memory Strategy ¡4 ¡ Strategy ¡5 ¡ Strategy ¡6 ¡

  20. Addressing Scale-up in Defender Strategies � Security game:Payoffs depend on attacked target covered or not � Target independence � Avoid enumeration of all joint strategies: � Marginals : Probabilities for individual strategies/schedules � Sample required joint strategies: IRIS I and IRIS II � But: Sampling may be difficult if schedule conflicts � IRIS I (single target/flight), IRIS II (pairs of targets) � Branch & Price : Probabilities on joint strategies � Enumerates required joint strategies, handles conflicts � IRIS III (arbitrary schedules over targets)

  21. Explosion in Defender Strategies: Marginals for Compact Representation ARMOR: 10 tours, 3 air marshals Payoff duplicates: Depends on target covered ARMOR Tour Prob Attack Attack Attack Attack Actions combos 1 2 … 6 1 1,2,3 x1 1,2,3 5,-10 4,-8 … -20,9 2 1,2,4 x2 1,2,4 5,-10 4,-8 … -20,9 3 1,2,5 x3 1,3,5 5,-10 -9,5 … -20,9 … … … … 120 8,9,10 x120 … … … … Compact Tour Prob Action IRIS MILP similar to ARMOR 1 1 y1 � 10 instead of 120 variables 2 2 y2 � y1+y2+y3…+y10 = 3 3 3 y3 � Construct samples over tour combos … … … 10 10 y10

  22. IRIS Speedups: Efficient Algorithms II Scaling with Targets: Compact ARMOR IRIS I IRIS II Runtimes (min) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Targets 10 ¡ 11 ¡ 12 ¡ 13 ¡ 14 ¡ 15 ¡ 16 ¡ 17 ¡ 18 ¡ 19 ¡ 20 ¡ ARMOR ARMOR IRIS Actions Runtime Runtime FAMS 6,048 4.74s 0.09s Ireland FAMS 85,275 ---- 1.57s London

  23. IRIS III � Next generation of IRIS � General scheduling constraints � Schedules can be any subset of targets � Resource can be constrained to any subset of schedules � Problem is NP hard (Conitzer et al.) � Branch and Price Framework � Techniques for large-scale optimization � Not an “out of the box” solution

  24. IRIS III Master Problem

  25. IRIS III: Branch and Price: Branch & Bound + Column Generation Not “out of the box” First Node: all a i ∈ [0,1] • Upper bounds: IRIS I • Column generation leaf nodes: Network flow Second node: Lower bound 1: a 1 = 0, a rest ∈ [0,1] a 1 = 1, a rest = 0 Third node: Lower bound 2: a 1 ,a 2 = 0, a 1 = 0, a 2 = 1, a rest = 0 a rest ∈ [0,1] LB last: a k = 1, a rest = 0

  26. Branching and Bounding � Standard approach: LP Relaxation � Allow integers to take on any value � Problem-specific relaxation � Resources ignore scheduling constraints � Resources cover the maximum number of possible targets Can be solved extremely fast using IRIS I

  27. IRIS III: Branch and Price: Branch & Bound + Column Generation Not “out of the box” First Node: all a i ∈ [0,1] • Upper bounds: IRIS I • Column generation leaf nodes: Network flow Second node: Lower bound 1: a 1 = 0, a rest ∈ [0,1] a 1 = 1, a rest = 0 Third node: Lower bound 2: a 1 ,a 2 = 0, a 1 = 0, a 2 = 1, a rest = 0 a rest ∈ [0,1] LB last: a k = 1, a rest = 0

  28. Column Generation Solution with “Slave” N joint schedules Problem “Master” Target 7 Target 3 Problem Resource Sink (linear program) (N+1) th joint … … schedule Restricted set of joint schedules Capacity 1 on all links Return the “best” joint schedule to add Minimum cost network flow: Identifies joint schedule to add

  29. Results: IRIS III Comparison (200 Targets, 10 Resources) Runtime (in secs) [log-scale] 1000 ERASER-C IRIS II 100 BnP B&P 10 ASPEN IRIS III 1 200 400 600 800 1000 Scale-up (200 Targets, 1000 schedules) Number of Schedules 8000 Runtime (in seconds) 7000 6000 5000 4000 2 Targets/Schedule 3 Targets/Schedule 3000 4 Targets/Schedule 2000 5 Targets/Schedule 1000 0 5 10 15 20 Number of Resources

  30. Deployed Applications: ARMOR, IRIS, GUARDS � Research challenges � Efficient algorithms: Scale-up to real-world problems � Observability: Adversary surveillance capabilities � Human adversary: Bounded rationality, observation power � Payoff uncertainty: New algorithms, models

Recommend


More recommend