g moreau
play

G. Moreau Laboratoire de Physique Thorique, Orsay, France Based on - PowerPoint PPT Presentation

Electroweak Breaking After First Three Years at the LHC Aspects of Aspects of Higgs Higgs rate rate fi fi ts ts G. Moreau Laboratoire de Physique Thorique, Orsay, France Based on arXiv:1210.3977 (will be updated tuesday) &


  1. « Electroweak Breaking After First Three Years at the LHC » Aspects of Aspects of Higgs Higgs rate rate fi fi ts ts G. Moreau Laboratoire de Physique Théorique, Orsay, France Based on arXiv:1210.3977 (will be updated tuesday) & Work in progress with A. Djouadi Warsaw - 17/03/2013 -

  2. 1/24 ¡ Outline A - Focusing on new fermions I) The Higgs fits with Extra-Fermions II) Constraining single Extra-Fermions B – The interests of rate ratios I) Get rid of the theoretical uncertainty II) Fitting ratios of signal strengths

  3. 2/24 ¡ A - Focusing on new fermions I) The Higgs fits with Extra-Fermions Today : The LHC has discovered a resonance of ~ 125.5 GeV it is probably the B.E.Higgs boson => EWSB mechanism + Tevatron and LHC provide 58 measurements of the Higgs rates = new precious source of indirect information on BSM physics nature of the EWSB : within the SM or a BSM context !?

  4. 3/24 ¡ On the theoretical side: New fermions arise in most (all?) of the SM extensions, – little Higgs [fermionic partners] – supersymmetry [gauginos / higgsinos] – composite Higgs [excited bounded states] – extra-dimensions [Kaluza-Klein towers] – 4 th generations [new families] – GUT [multiplet components] – etc … What are the present constraints on extra-fermions from all the experimental Higgs boson results ?

  5. 4/24 ¡ Effective approach : Corrections on the Higgs couplings from any extra-fermions (via mixing, new loops) t L t R − c b Y b h ¯ L h = − c t Y t h ¯ b L b R − c τ Y τ h ¯ τ L τ R α α s π v h F µ ν F µ ν + C hgg 12 π v h G aµ ν G a + C h γγ µ ν + h . c . Modifications of Y f Yukawa couplings via ( f ’) EF mixings : SM ¡ f R f ’ ¡ h ¡ f ’’ ¡ f L SM ¡

  6. 5/24 ¡ b’ , q 5/3 , … C hgg = 2 C ( t ) A [ τ ( m t )] ( c t + c gg ) + 2 C ( b ) A [ τ ( m b )] c b + 2 C ( c ) A [ τ ( m c )] , b’ , q 5/3 , … C h γγ = N t t A [ τ ( m t )] ( c t + c γγ ) + N b b A [ τ ( m b )] c b + N c τ A [ τ ( m τ )] c τ + 1 c A [ τ ( m c )] + N τ c c c c 6 Q 2 6 Q 2 6 Q 2 6 Q 2 8 A 1 [ τ ( m W )] ,

  7. 6/24 ¡ Higgs production cross sections over their SM expectations : � 2 � � � ( c t + c gg ) A [ τ ( m t )] + c b A [ τ ( m b )] + A [ τ ( m c )] σ gg ! h σ h¯ tt ' | c t | 2 , ' σ SM � 2 σ SM � � � A [ τ ( m t )] + A [ τ ( m b )] + A [ τ ( m c )] h¯ gg ! h tt Higgs partial decay widths over the SM predictions (no new channels) : � 2 � 1 � 4 A 1 [ τ ( m W )] + ( 2 3 ) 2 ( c t + c �� ) A [ τ ( m t )] + ( � 1 3 ) 2 c b A [ τ ( m b )] + ( 2 3 ) 2 A [ τ ( m c )] + 1 � 3 c ⌧ A [ τ ( m ⌧ )] Γ h ! �� ' � 2 Γ SM � � 1 4 A 1 [ τ ( m W )] + ( 2 3 ) 2 A [ τ ( m t )] + ( � 1 3 ) 2 A [ τ ( m b )] + ( 2 3 ) 2 A [ τ ( m c )] + 1 � 3 A [ τ ( m ⌧ )] h ! �� Γ h ! ¯ Γ h ! ¯ ⌧⌧ bb ' | c b | 2 ' | c ⌧ | 2 , Γ SM Γ SM h ! ¯ bb h ! ¯ ⌧⌧

  8. 7/24 ¡ Measured signal strengths all of the form (exp. selection efficiencies) : ✏ gg ! h | p ✏ gg ! h | p ✏ gg ! h | p s,c,i � SM s,c,i � SM ✏ hqq ✏ h¯ � gg ! h | s + hqq | s + ✏ hV hV | s + tt | s tt s,c,i � h¯ B h ! XX µ p s,c,i ' ✏ gg ! h | p ✏ gg ! h | p ✏ gg ! h | p � SM ✏ hqq s,c,i � SM s,c,i � SM s,c,i � SM B SM gg ! h | s + hqq | s + ✏ hV hV | s + ✏ h¯ tt | s tt h¯ h ! XX � 2 ( c t , c b , c τ , c gg , c γγ ) d For the fit analysis, we define a function : ( µ p s,c,i � µ p s,c,i | exp ) 2 � 2 = X ( � µ p s,c,i ) 2 p,s,c,i

  9. 8/24 ¡ Taking ¡the ¡latest ¡experimental ¡results… ¡

  10. 9/24 ¡ @ a D @ b D 10 10 Higgs fit results : 0.5 1 5 5 c t = 1.5 c t = 1 c b = 1 c gg c t = 1 c b c gg = 0.75 0.5 1 c t = 2.5 t' ( 3 free SM 0 0 68 % 95 % param.) 95 % 99 % 99 % - 5 - 5 - 3 - 2 - 1 0 1 - 4 - 3 - 2 - 1 0 1 2 c gg c gg @ c D @ d D 40 15 c b = 10 c t = 1 10 20 + + 99 % 95 % 5 0.5 c gg 1 c gg c t = 1.5 c t = 1 c b = 2.08 b' 0 68 % b' - 1.9 c t = 1.8 95 % 0 + + 99 % f, ∆ χ 2 = χ 2 − χ 2 68 % 1 min , 95 % - 20 gg - 5 γγ e χ 2 99 % min = 52 . 36. - 10 - 40 - 4 - 3 - 2 - 1 0 1 2 - 10 - 5 0 5 10 c gg c gg

  11. 10/24 ¡ « 3 conclusions for this first fit… » } * The SM point ( ) does not belong to the 1 σ region e, χ 2 SM = 57 . 10 * Determination of and relies on the knowledge of Y t EF ( c t ) = 1; c gg = 0; c γγ EF ( c b ) B(h VV) compensated by σ gg->h i.e. * Y b = 1; c gg Y b cannot be determined by the (previous) Higgs fit suggestion : avoid compensations by measuring estigate the b (or equivalently the bottom y, h ! ¯ qq ! h¯ bb and gg ! h¯ bb. cesses, ¯ bb

  12. 10 10 Higgs fit 8 8 results : 6 6 0.5 0.5 1 1 c t = 1.5 c t = 1.5 4 4 c gg c gg c t = 1 c b c t = 1 c b = 1 = 0.75 2 2 ( 3 free 99 % SM t' 0 0 param.) 95 % 68 % 68 % 95 % - 2 - 2 99 % - 4 - 4 - 3 - 2 - 1 0 1 - 3 - 2 - 1 0 1 c gg c gg AFTER 10 MORIOND... 10 8 + + 6 0.5 0.5 1 1 c t = 1.5 5 c t = 1.5 4 c gg c gg c t = 1 c b = 1.09 c b c t = 1 = 2 2 f, ∆ χ 2 = χ 2 − χ 2 min , 0 0 b' b' + + gg γγ 68 % 95 % - 2 e χ 2 min = 52 . 36. 95 % 99 % 99 % - 4 - 5 - 3 - 2 - 1 0 1 - 3 - 2 - 1 0 1 2 c gg c gg

  13. 11/24 ¡ | c τ | Varying the last parameter : 10 10 10 8 8 8 + + 6 6 0.5 6 0.5 0.5 1 1 c t = 1.5 1 c t = 1.5 c t = 1.5 4 4 4 c gg c gg c gg c b c t = 0.05 c b = 1.09 c t = 1.6 = 1.09 c t = 1 c b = 1.09 2 2 2 0 0 0 + + b' 68 % 68 % - 2 68 % - 2 - 2 95 % 95 % 95 % 99 % 99 % 99 % - 4 - 3 - 2 - 1 0 1 - 3 - 2 - 1 0 1 - 3 - 2 - 1 0 1 c gg c gg c gg

  14. 12/24 ¡ II) Constraining single Extra-Fermions Single extra-fermion (starting approximation) => new loop-contributions : Y q 5 / 3 1  � C ( t 0 ) Y t 0 � c gg = m t 0 A [ τ ( m t 0 )] � C ( q 5 / 3 ) A [ τ ( m q 5 / 3 )] + . . .  � C ( t ) A [ τ ( m t )] /v m q 5 / 3  ✓ ◆ ✓ ◆ ◆ 2 Y t 0 ◆ 2 Y q 5 / 3 1  ✓ 2 ✓ 5 ` 0 Y ` 0 � q 5 / 3 A [ τ ( m q 5 / 3 )] � Q 2 c �� = � 3 m t 0 A [ τ ( m t 0 )] � N m ` 0 A [ τ ( m ` 0 )] + . . . c N t c Q 2 t A [ τ ( m t )] /v 3 3 m q 5 / 3 Q 2 � c �� (same color repres. as the top) q 0 � = � (2 / 3) 2 c gg � q 0

  15. 13/24 ¡ independently of Y q’ , masses, SU(2) L repres. � Q � pert. 99 � 10 (2 free parameters) 95 � 68 � 10 c t � 1 8 68 % c b 5 � 1 95 % c Τ � 1 6 99 % c ΓΓ c t = 1 l’ ¡ 4 c b = 1 c gg Q l ¢ = - 1 Q q � � 0 c gg = 0 0 2 � 1 � 3 0 2 � 3 - 2 � 4 � 3 8 � 3 5 � 3 � 7 � 3 � 5 - 2 - 1 0 1 2 � 2.0 � 1.5 � 1.0 � 0.5 0.0 c t c gg

  16. AFTER independently of Y q’ , masses, SU(2) L repres. MORIOND... » Q » pert. 10 (2 free parameters) 99 % 95 % 68 % 10 c t = 1 8 c b = 1 5 99 % 95 % 68 % c t = 1 6 c gg c t = 1 4 c b = 1 c gg Q l ¢ = - 1 Q q ¢ = 0 c gg = 0 0 2 - 1 ê 3 0 2 ê 3 - 2 - 4 ê 3 8 ê 3 5 ê 3 - 7 ê 3 - 5 - 2 - 1 0 1 2 - 2.0 - 1.5 - 1.0 - 0.5 0.0 c t c gg

  17. 14/24 ¡ (1 free param.) For low-charge q’ , Ex Ex ts ts a-dys ysfe fermiophilia : ✓ − Y q 0 ◆ sign < 0 m q 0 … increasing the diphoton rates. e, q 5 / 3 ! tW + , s, q 8 / 3 ! tW + W + ,

  18. 15/24 ¡ Con onclus usion ions (A) Already non-trivial & generic constraints on extra-fermions from the Higgs rate fit : Potentially stringent constraints on extra-quark electric charges independently of the Yukawa’s, masses, SU(2) L representations Extra-dysfermiophilia for low-charge single q’ (colored as the top) The obtained plots can be used for any scenario with new fermions + Difficult and correlated determinations of some Yukawa couplings and parameters for the new loop-contributions to hgg , h γγ .

  19. 16/24 ¡ B – The interests of rate ratios I) Get rid of the theoretical uncertainty The ¡QCD ¡uncertainty ¡ ¡ (PDF, ¡ α s 2 ¡@ ¡LO, ¡scale ¡dependence) ¡ ¡on ¡the ¡ inclusive ¡Higgs ¡production ¡cross ¡section ¡reaches ¡ ¡~ ¡15-­‑20% ¡ ¡ [LHCHWG] ¡ δ exp N evts . ( pp → H → XX ) ..it ¡affects ¡ µ XX | exp = i � X � i σ i ( H ) BR( H → XX ) | SM × L the ¡ ¡ ¡ ¡’s ¡fit ¡ µ XX � δ th i � X � i σ i ( H ) BR( H → XX ) µ XX | th = i � X � i σ i ( H ) BR( H → XX ) | SM

  20. 17/24 ¡ Taking ¡ ¡ ¡ ¡ ¡ratios ¡can ¡allow ¡to ¡suppress ¡the ¡QCD ¡error ¡: ¡ µ XX δ exp exp = N evts . ( pp → H → XX ) i � Y � i σ i ( H ) | SM BR( H → Y Y ) | SM µ XX � � i � X N evts . ( pp → H → Y Y ) � i σ i ( H ) | SM BR( H → XX ) | SM µ Y Y � can ¡cancel ¡out ¡! ¡ � tH σ ( gg → t ¯ th = � X gg σ ( gg → H )+ � X VBF σ ( qq → Hqq )+ � X q → V H ) + � X HV σ ( q ¯ tH ) µ XX � t ¯ � tH σ ( gg → t ¯ gg σ ( gg → H ) + � Y VBF σ ( qq → Hqq ) + � Y q → V H ) + � Y � Y HV σ ( q ¯ tH ) µ Y Y � t ¯ Γ ( H → XX ) i � Y i σ i ( H ) | SM � Γ ( H → XX ) | SM × D XY ( c f , c V ) ( i � X Γ ( H → Y Y ) � i σ i ( H ) | SM Γ ( H → Y Y ) | SM

Recommend


More recommend