combinatorics of gauss diagrams and the homflypt
play

Combinatorics of Gauss diagrams and the HOMFLYPT polynomial. Sergei - PDF document

Heidelberg University WORKSHOP The Mathematics of Knots: Theory and Application Combinatorics of Gauss diagrams and the HOMFLYPT polynomial. Sergei Chmutov Max-Planck-Institut f ur Mathematik, Bonn The Ohio State University, Mansfield


  1. Heidelberg University WORKSHOP “The Mathematics of Knots: Theory and Application” Combinatorics of Gauss diagrams and the HOMFLYPT polynomial. Sergei Chmutov Max-Planck-Institut f¨ ur Mathematik, Bonn The Ohio State University, Mansfield Joint work with Michael Polyak Monday, December 15, 2008

  2. Plan • Gauss diagrams and virtual links. • HOMFLYPT polynomial and Jaeger’s state model for it. • Two HOMFLYPTs for virtual links. • Gauss diagram formulas for Vassiliev invariants.

  3. Gauss diagrams A Gauss diagram is a collection of oriented circles with a distinguished set of ordered pairs of distinct points. Each pair carries a sign ± 1. a b d 2 1 c e d e f b a e f c 2 c f d 1 a b Ordered Gauss diagram is an ordered col- lection of circles with a base point 1 , 2 , . . . , m on each. is a not realizable Gauss diagram.

  4. Reidemeister moves Ω 1 : ε ε − ε Ω 2 : ε Ω 3 : A virtual link is a Gauss diagram up to the Reidemeister moves.

  5. The HOMFLYPT polynomial ) − a − 1 P ( aP ( ) = zP ( ) ; P ( ) = 1 . State models on Gauss diagram A state S on a Gauss diagram G is a subset of its arrows. Let G ( S ) be the Gauss diagram obtained by doubling every arrow in S : , c ( S ) := # of circles of G ( S ).

  6. Theorem (F.Jaeger’90). � c ( S ) − 1 � a − a − 1 � � P ( G ) = � α | G | S �· z α ∈ G S Table of local weights � α | G | S � : First passage: ε εa − ε z a − 2 ε 0 1 Example. For the Gauss diagram of the trefoil the states with non-zero weights are: 1 2 1 · a 2 · 1 1 · ( − az ) a 2 ( a − a − 1 ) 1 · ( − az )( − az ) z P ( G ) = (2 a 2 − a 4 ) + z 2 a 2

  7. Invariance under the Reidemeister moves Theorem. P ( G ) is invariant under Rei- demeister moves of ordered Gauss diagrams and thus defines an invariant of ordered virtual links. Proof. α α Ω 1 : ε ε � � S S 2:1 1:2 − S ← − − − → S ∪ α S ∪ α a − 2 ε � G | S � � � � G | S � � G | S � εa − ε z a − a − 1 0 � G | S � z a − 2 ε + a − ε ( a − a − 1 ) ≡ 1

  8. − ε α 1 Ω 2 : α 2 ε 4:1 S, S ∪ α 1 , S ∪ α 2 , S ∪ α 1 ∪ α 2 − S ← − Three cases: (1) the first entrance to this fragment in S is on the right string; (2a) the first entrance is on the left string and both strings belong to the same circle of G ( S ); (2b) the first entrance is on the left string and the strings belong to two different circles of G ( S ). (1) 1 0 0 0 − εa − ε z εa ε z ( a − a − 1 ) z (2a) 1 − εa ε z εa ε z (2b) 1 0

  9. Ω 3 : Two of the 14 cases: 1in 1out 1in 1out a − 1 z · a − 1 z · a − 2 ← → 2out 2out 3in 3in 2in 3out 2in 3out 1in 1out 1in 1out a − 1 z · a − 1 z · 1 ← → 3out 3out 2in 2in 3in 2out 3in 2out � Corollary. 1. HOMFLYPT extends to an invariant of ordered virtual links. 2. Interchanging “head” and “tail” of the arrows in the table of local weight of the Jaeger model gives another extension of the HOMFLYPT to virtual links. 3. These two extensions coincide on clas- sical links.

  10. Gauss diagram formulas Let S be the space generated by all Gauss diagrams. A map I : S → S is defined as � � I ( G ) = A =: � A, G � A A ⊆ G The pairing � A, G � extends to a bilinear pair- ing �· , ·� : S × S → S . A Gauss diagram formula for a link invariant v is a linear combination � λ i A i presenting v in a form � v ( L ) = � λ i A i , G L � Shorter notation. := − 2 2 2 1 1 1 � , G L � = lk ( L ) 2 1

  11. := − − + Theorem of Goussarov. Any Vassiliev knot invariant can be rep- resented by a Gauss diagram formula. Coefficients of the HOMFLYPT polynomial p k,l ( L ) h k z l � P ( L ) | a = e h =: Goussarov’s Lemma. The coefficient p k,l is a Vassiliev invari- ant of order � k + l . p k,l ( K ) =: � A k,l , G K �

  12. A 0 , 2 = ; A 2 , 0 = 0 ; A 0 , 3 = 0 ; A 3 , 0 = − 4 A 1 , 2 ; A 1 , 2 = − 2( + + + + − + + − ) ; A 0 , 4 = + + + + + + + + + + + + + + + + + + + + + ; A 2 , 2 = 78 terms.

Recommend


More recommend