g 2
play

( g 2 ) and new physics Magnetic moment Dominik Stckinger, TU - PowerPoint PPT Presentation

( g 2 ) and new physics Magnetic moment Dominik Stckinger, TU Dresden ( g 2 ) and new physics SSP2012, June 2012, Groningen Magnetic moment 10 a SM = ( 28 : 6 8 ) 10 10 ! (?? 1 : 6 exp


  1. ( g � 2 ) � and new physics Magnetic moment Dominik Stöckinger, TU Dresden ( g � 2 ) � and new physics SSP2012, June 2012, Groningen Magnetic moment

  2. � 10 � a SM = ( 28 : 6 � 8 ) � 10 � � � 10 ! (?? � 1 : 6 exp � 3 th ) � 10 Note: discrepancy almost twice as large as a SM ; weak � Introduction � � 2 � a SM ; weak � � couplings � � a exp � in general I Different types of new physics lead to very different a � (N.P I compare with LHC, subleading contributions M W but we expect: a NP ( g � 2 ) M NP � and new physics Outline New physics contributions to a .) SUSY Alternatives: Extra dimensions, light particles, . . . Magnetic moment

  3. � constraints � Outline Impact on New Physics in general 1 SUSY 2 Can explain the deviation — a LHC vs a Subleading contributions ( g � 2 ) � and new physics Alternatives to SUSY 3 Conclusions 4 Backup 5 Magnetic moment Impact on New Physics in general

  4. � � R � L � 2 = chirality-flipping interaction � R � L � = chirality-flipping interaction as well New physics contributions to a g m ( g � 2 ) � and new physics Magnetic moment Impact on New Physics in general

  5. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � Very different contributions to a C generally: m M classify new physics: C very model-dependent ( g � 2 ) � and new physics Magnetic moment Impact on New Physics in general

  6. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � O ( 1 ) Very different contributions to a C generally: m M � O ( : : : ) 4 � classify new physics: C very model-dependent � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � ( g � 2 ) � and new physics Z Magnetic moment Impact on New Physics in general

  7. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � O ( 1 ) Very different contributions to a � ), unparticles C generally: m M � O ( : : : ) 4 � classify new physics: C very model-dependent � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � supersymmetry (tan ( g � 2 ) � and new physics [Cheung, Keung, Yuan ’07] extra dim. (ADD/RS) ( n c ). . . [Davioudasl, Hewett, Rizzo ’00] [Graesser,’00][Park et al ’01][Kim et al ’01] Z Magnetic moment Impact on New Physics in general

  8. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � O ( 1 ) Very different contributions to a � ), unparticles C generally: m M � O ( : : : ) 4 � classify new physics: C very model-dependent � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � radiative muon mass generation . . . [Czarnecki,Marciano ’01] [Crivellin, Girrbach, Nierste ’11][Dobrescu, Fox ’10] supersymmetry (tan ( g � 2 ) � and new physics [Cheung, Keung, Yuan ’07] extra dim. (ADD/RS) ( n c ). . . [Davioudasl, Hewett, Rizzo ’00] [Graesser,’00][Park et al ’01][Kim et al ’01] Z Magnetic moment Impact on New Physics in general

  9. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � Very different contributions to a O ( 1 ) C generally: � ), unparticles m M � classify new physics: C very model-dependent O ( : : : ) 4 � Very useful constraints on new physics � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � radiative muon mass generation . . . [Czarnecki,Marciano ’01] [Crivellin, Girrbach, Nierste ’11][Dobrescu, Fox ’10] ( g � 2 ) � and new physics supersymmetry (tan [Cheung, Keung, Yuan ’07] extra dim. (ADD/RS) ( n c ). . . [Davioudasl, Hewett, Rizzo ’00] [Graesser,’00][Park et al ’01][Kim et al ’01] Z Magnetic moment Impact on New Physics in general

  10. � constraints � Outline Impact on New Physics in general 1 SUSY 2 Can explain the deviation — a LHC vs a Subleading contributions ( g � 2 ) � and new physics Alternatives to SUSY 3 Conclusions 4 Backup 5 Magnetic moment SUSY

  11. � 2 in the MSSM: chirality flips, � � , and H u + ~ + ~ h H u i � = ; � = H u � H d transition h H d i + ~ + ~ g � R � L � ~ � � / � h H u i � = m � � ! a SUSY / tan � sign ( � ) � � tan � H W u / tan � = 1 : : : 50 (and / sign( � )) tan H W d some terms ( g � 2 ) � and new physics m 2 M 2 SUSY potential enhancement Magnetic moment SUSY

  12. � 2 in the MSSM � 100 GeV � 2 � 10 tan � 12 � 10 � sign ( � ) � g � 10 deviation! ( 28 : 6 � 8 ) � 10 numerically � , large tan � /small M SUSY preferred a SUSY M SUSY SUSY could be the origin of the observed ( g � 2 ) � and new physics positive however, beware of the fine print. . . Precise analysis justified! Magnetic moment SUSY

  13. � central complement for SUSY parameter analyses a � 1 ) � sharply distinguishes SUSY models ( g � 2 ) � and new physics SPS benchmark points LHC Inverse Problem (300fb [v.Weitershausen,Schäfer, can’t be distinguished at LHC Stöckinger-Kim,DS ’10] [Sfitter: Adam, Kneur, Lafaye, [Hertzog, Miller, de Rafael, Roberts, DS ’07] Plehn, Rauch, Zerwas ’10] a helps measure parameters Magnetic moment SUSY

  14. � central complement for SUSY parameter analyses a � 1 ) � sharply distinguishes SUSY models ( g � 2 ) � and new physics SPS benchmark points LHC Inverse Problem (300fb [v.Weitershausen,Schäfer, can’t be distinguished at LHC Stöckinger-Kim,DS ’10] [Sfitter: Adam, Kneur, Lafaye, [Hertzog, Miller, de Rafael, Roberts, DS ’07] Plehn, Rauch, Zerwas ’10] a helps measure parameters Next: Tension in SUSY models — subleading contributions Magnetic moment SUSY

  15. � > � 1TeV < � 700GeV ~ ; ~ �;� ~ The tension is increasing = 126 GeV(?) > � 1TeV ; � small ~ ~ a LHC: m m q g m h finetuning m m t t ( g � 2 ) � and new physics also: dark matter, b-physics, FCNC/CP-constraints Magnetic moment SUSY

  16. � vs LHC-bounds on squarks/gluinos vs potential m h -measurement ~ � – m h ~ Constrained models I a CMSSM, LHC, m CMSSM, LHC, m =126 GeV =126 GeV h h CMSSM: link m q – m SM ± ± a - a (2.9 0.8 0.2)E-9 0.3E-9 µ µ → γ ± ± BR(b s ) (3.55 0.26 0.23)E-4 2.88E-4 → τ ν ± BR(B ) (1.67 0.39)E-4 0.99E-4 incompatible → µ + µ - ± BR(B ) <(4.50 0.30)E-9 3.61E-9 s ∆ ± ± -1 m (ps ) 17.78 0.12 5.20 20.58 s 2 θ l ± sin 0.23113 0.00021 0.23138 eff ± ± m (GeV) 80.385 0.015 0.010 80.386 W ± ± m (GeV) 126.0 2.0 3.0 124.4 h LHC Ω 2 ± ± h 0.1123 0.0035 0.0112 0.1112 CDM σ SI (pb ) 2.44E-11 0 1 2 3 σ |Meas.-Fit|/ ( g � 2 ) � and new physics NUHM1, LHC, m NUHM1, LHC, m =126 GeV =126 GeV h h ± ± a - a SM (2.9 0.8 0.2)E-9 1.8E-9 µ µ → γ ± ± BR(b s ) (3.55 0.26 0.23)E-4 3.12E-4 NUHM1: m soft → τ ν ± independent BR(B ) (1.67 0.39)E-4 0.91E-4 h → µ µ ± + - BR(B ) <(4.50 0.30)E-9 4.59E-9 s ∆ -1 ± ± m (ps ) 17.78 0.12 5.20 20.88 s marginally compatible 2 θ l ± sin 0.23113 0.00021 0.23148 eff ± ± m (GeV) 80.385 0.015 0.010 80.367 W ± ± finetuning? m (GeV) 126.0 2.0 3.0 118.8 h LHC Ω 2 ± ± h 0.1123 0.0035 0.0112 0.1094 CDM σ SI (pb ) 1.81E-10 0 1 2 3 σ |Meas.-Fit|/ Magnetic moment SUSY

  17. ~ ! FCNC, finetuning ok � 0, would need m � m � � ~ ~ Constrained models II ~ ; � ~ � , m h , LHC-bounds [Endo, Hamaguchi, Iwamoto, Yokozaki ’11]. . . “Natural SUSY” [Barger, Huang, Ishida, Keung ’12]. . . t 1st, 2nd generation very heavy, light > � 600GeV ~ ~ ; a q � Gauge-mediated SUSY breaking (FCNC ok) + extra matter increase m h , lower m q reconcile a ( g � 2 ) � and new physics Compressed SUSY [Martin, LeCompte ’11] hidden at LHC for m q g compatible with a Still tension/models might be be ruled out soon! Magnetic moment SUSY

  18. = � � v d � Alternative: radiative muon mass in SUSY � = 0 � 0 � L ~ � R H u ~ � via A � ! 0, tan � ! 1 � via coupling to v u m tree 1 generate m [Borzumati et al ’99][Crivellin et al ’11] ( g � 2 ) � and new physics v d 2 generate m [Dobrescu, Fox ’10][Altmannshofer, Straub ’10] Magnetic moment SUSY

  19. / tan � / log M SUSY / tan � � m t � ~ � 0 ; � Status of SUSY prediction ~ � 0 ; � � 1-Loop 2-Loop (SUSY 1L) 2-Loop (SM 1L) �; � � � � � � � �; ~ � ~ ~ � ; ~ � � e.g. e.g. m t f ( tan � ) 2 f H [Degrassi,Giudice ’98] [Fayet ’80],. . . ( g � 2 ) [Chen,Geng’01][Arhib,Baek ’02] � and new physics [Marchetti, Mertens, Nierste, DS ’08] [Kosower et al ’83],[Yuan et al ’84],. . . [Heinemeyer,DS,Weiglein ’03] [Schäfer, Stöckinger-Kim, [Lopez et al ’94],[Moroi ’96] [Heinemeyer,DS,Weiglein ’04] v. Weitershausen, DS ’10] complete photonic complete aim: full calculation (65000 diagrams) Magnetic moment SUSY

  20. � R ~ Physics of subleading contributions (examples) ~ ~ ~ ~ ~ ~ � L � R � L � R � L ~ � R ~ � R ~ / � for � ! 1 / other sign! 1-loop ! large � -parameter ! Use if � M 2 < 0, light � R ~ 1-loop bino H 2 B B B H 1 B ( g � 2 ) � and new physics Magnetic moment SUSY

Recommend


More recommend