abdus salam physics beyond the standard model
play

Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi - PowerPoint PPT Presentation

Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Abdus Salam Memorial Meeting, Singapore. January 2016 1 / 36 (1964) 2 / 36 (1993) 3 /


  1. Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Abdus Salam Memorial Meeting, Singapore. January 2016 1 / 36

  2. (1964) 2 / 36

  3. (1993) 3 / 36

  4. BCSPIN : 1989- Bangladesh, China, SriLanka, Pakistan, India, Nepal; Salam present in the first school in 1989; also King of Nepal. BC(V)SPIN / Asian American Advanced Study Institute 2009- Held in Nepal, India, China, Vietnam, Mexico (2014). Supported by ICTP, NSF (USA), China, Mexico, Univ. of Delaware, Mitchell Foundation (Texas A& M), ... 4 / 36

  5. 5 / 36

  6. (2007) 6 / 36

  7. (2007) 7 / 36

  8. Physics Beyond the Standard Model Neutrino Physics: SM + Gravity suggests m ν � 10 − 5 eV, which disagrees with neutrino data; Dark Matter: SM offers no plausible DM candidate; Origin of matter in the universe: Electric Charge Quantization: Unexplained in the SM; CMB Isotropy / Anisotropy, Origin of Structure require ideas beyond Hot Big Bang Cosmology (which comes from SM + General Relativity.) Strong CP Problem. 8 / 36

  9. Quark-Lepton Unification, lepton number as 4th color, electric charge quantization, neutrino mass, ... (with JCP); Baryon number violation (with JCP); Superfields & R- symmetry (with John Strathdee); Kaluza-Klein Theories (JS, Randjbar-Daemi,...). 9 / 36

  10. Sky is the Limit Matter Multiplets in Grand Unification Pati-Salam → SU (4) c × SU (2) L × SU (2) R : (4 , 2 , 1) + (4 , 1 , 2) � u u u ν e � = ⇒ 16 chiral fields; d d d ℓ L,R SM neutrinos have non-zero masses. Georgi-Glashow → SU (5) : 10 + 5 15 chiral fields; Massless neutrinos Fritzsch-Minkowski, Georgi → SO (10) : SU (5) 16 − plet − → 10 + 5 + 1( ν R ) 10 / 36

  11. b - τ YU in SU (4) × SU (2) L × SU (2) R (422) m 16 , m H i , M i , A 0 , tan β, sign ( µ ) m 16 ≡ Universal soft SUSY breaking (SSB) sfermion mass m H d ,H u ≡ Universal SSB MSSM Higgs masses. M i ≡ SSB gaugino masses. M 1 = 3 5 M 2 + 2 5 M 3 A 0 ≡ Universal SSB trilinear interaction tan β = v u v d µ ≡ SUSY bilinear Higgs parameter µ > 0 11 / 36

  12. Random scans for the following parameter range (NUHM2): 0 ≤ m 16 ≤ 20 TeV , 0 ≤ M 2 ≤ 5 TeV , 0 ≤ M 3 ≤ 5 TeV , − 3 ≤ A 0 /m 16 ≤ 3 , 0 ≤ m H d ≤ 20 TeV , 0 ≤ m H u ≤ 20 TeV 2 ≤ tan β ≤ 60 , µ > 0 , m t = 173 . 3 GeV . 12 / 36

  13. Point 1 Point 2 Point 3 m 0 1086 . 39 460 . 72 497 . 64 M 1 979 . 1 3313 . 58 3606 . 12 M 2 979 . 1 4579 . 38 4908 . 89 M 3 979 . 1 1414 . 89 1651 . 94 A 0 − 3244 . 79 − 1270 . 88 − 1390 . 14 tan β 28 . 49 15 . 41 16 . 47 µ 1853 176 746 m h 124 . 06 124 124 . 1 m H 1862 2856 3109 m A 1850 2838 3088 m H ± 1864 2857 3110 m ˜ 424 , 807 180 , 182 759 , 762 χ 0 1 , 2 m ˜ 1845 , 1847 1477 , 3757 1620 , 4032 χ 0 3 , 4 m ˜ 810 , 1850 188 , 3754 780 , 4023 χ ± 1 , 2 m ˜ 2180 3048 3515 g m ˜ 2239 , 2174 3842 , 2719 4253 , 3118 uL,R m ˜ 1084 , 1744 1039 , 3394 1467 , 3768 t 1 , 2 m ˜ 2240 , 2166 3843 , 2629 4254 , 3025 dL,R m ˜ 1721 , 1947 2524 , 3436 2905 , 3808 b 1 , 2 m ˜ 1261 2980 3182 ν 1 m ˜ 1098 2972 3164 ν 3 m ˜ 1265 , 1144 2978 , 1296 3181 , 1407 eL,R m ˜ 719 , 1107 1189 , 2961 1276 , 3156 τ 1 , 2 9 . 24 × 10 − 12 1 . 79 × 10 − 10 2 . 84 × 10 − 10 σ SI (pb) 2 . 46 × 10 − 09 2 . 29 × 10 − 06 2 . 36 × 10 − 07 σ SD (pb) Ω CDM h 2 7 . 06 0 . 007 0 . 11 ∆ EW 827 15 . 4 134 ∆ HS 1110 51 . 3 181 13 / 36

  14. Point 1 Point 2 Point 3 Point 4 Point 5 m 16 12730 9839 17640 7477 11940 M 1 1172 1903 1462 1496 1700 M 2 1820 2881 2327 2335 2660 M 3 550 435.3 165 237 260 m Hd , m Hu 11720, 14690 5967, 7279 12890, 5640 6624, 1513 3111, 5478 tan β 36.3 41.3 52.9 32.4 39.0 A 0 /m 0 -2.07 -2.41 -2.62 -2.56 -2.63 m t 173.3 173.3 173.3 173.3 173.3 µ 4957 9186 19086 8552 13149 0 . 82 × 10 − 11 0 . 72 × 10 − 11 0 . 28 × 10 − 11 0 . 97 × 10 − 11 0 . 45 × 10 − 11 ∆( g − 2) µ m h 126.4 125.9 123.9 125 123.3 m H 2262 2157 1799 7900 3058 m A 2247 2144 1788 7849 3039 m H ± 2264 2160 1802 7901 3061 m ˜ 641,1682 918, 2585 770,2276 715, 2087 837, 2441 χ 0 1 , 2 m ˜ 4973, 4974 9137, 9137 18924, 18924 8537, 8537 13101, 13101 χ 0 3 , 4 m ˜ 1697, 4979 2604, 9133 2281, 18927 2104, 8534 2457, 13090 χ ± 1 , 2 m ˜ 1625 1314 879 790 943 g m ˜ 12743, 12860 9988, 9900 17708, 17538 7616, 7393 12019, 11977 uL,R m ˜ 689, 6131 1042, 4668 5577, 7056 781, 4077 901, 5263 t 1 , 2 m ˜ 12743, 12715 9988, 9853 17708, 17721 7617, 7525 12019, 11933 dL,R m ˜ 6234, 8566 4706, 5997 6884, 7646 4125, 5259 5293, 7047 b 1 , 2 m ˜ 12859 10035 17634 7562 12091 ν 1 m ˜ 11262 8267 12950 6496 10076 ν 3 m ˜ 12846, 12581 10027, 9814 17630, 17854 7554, 7623 12081, 11906 eL,R m ˜ 9129, 11263 5711, 8239 5525, 12875 5399, 6519 7366, 10045 τ 1 , 2 0 . 71 × 10 − 13 0 . 16 × 10 − 13 0 . 70 × 10 − 14 0 . 62 × 10 − 14 0 . 27 × 10 − 13 σ SI (pb) 0 . 18 × 10 − 9 0 . 19 × 10 − 11 0 . 14 × 10 − 14 0 . 41 × 10 − 12 0 . 59 × 10 − 16 σ SD (pb) Ω CDM h 2 0.13 0.86 0.45 0.09 0.123 R 1.06 1.18 1.04 1.19 1.09 14 / 36

  15. Those Guys from Harvard 15 / 36

  16. Those Guys from Harvard 16 / 36

  17. The Biggest Hoax in Physics? Inflationary Cosmology Successful Primordial Inflation should: Explain flatness, isotropy; Provide origin of δT T ; Offer testable predictions for n s , r , dn s /d ln k ; Recover Hot Big Bang Cosmology; Explain the observed baryon asymmetry; Offer plausible CDM candidate; Physics Beyond the SM? 17 / 36

  18. Cosmic Inflation • Inflation can be defined as: d ⎛ ⎞ 1 < a decreasing comoving horizon ⎜ ⎟ 0 , dt ⎝ aH ⎠ > a & & an accelerated expansion 0 , < − ρ P a negative pressure repulsive gravity / 3 , drives inflation • Consider a scalar field φ 1 & ρ φ = φ + φ ≈ ≈ Ht 2 V V a t e ( ) , ( ) inflation 2 Slow rolling scalar field acts as an inflaton 18 / 36

  19. Cosmic Inflation Tiny patch ~10 -28 cm > 1 cm after 60 e-foldings (time constant ~10 -38 sec) radiation dominated universe (hot big bang) Inflation over Quantum fluctuations of inflation field give rise to nearly scale invariant, adiabatic, Gaussian density perturbations Seed for forming large scale structure 19 / 36

  20. ⎛ ⎞ k • Solution to the Flatness Problem ⎜ Ω − = ⎟ 1 ⎜ ⎟ ⎝ aH 2 ⎠ ( ) Ω − = Ω − − N → = Δ ≥ N e 2 1 1 0 , where H t 50 f i • Solution to the Horizon Problem Image courtesy of W. Kinney 20 / 36

  21. Slow-roll Inflation Inflation is driven by some potential V ( φ ) : Slow-roll parameters: � 2 m 2 � � � V ′ V ′′ , η = m 2 p ǫ = . p 2 V V The spectral index n s and the tensor to scalar ratio r are given by d ln k , r ≡ ∆ 2 n s − 1 ≡ d ln ∆ 2 R R , h ∆ 2 where ∆ 2 h and ∆ 2 R are the spectra of primordial gravity waves and curvature perturbation respectively. Assuming slow-roll approximation (i.e. ( ǫ, | η | ) ≪ 1 ), the spectral index n s and the tensor to scalar ratio r are given by n s ≃ 1 − 6 ǫ + 2 η , r ≃ 16 ǫ . 21 / 36

  22. The tensor to scalar ratio r can be related to the energy scale of inflation via V ( φ 0 ) 1 / 4 = 3 . 3 × 10 16 r 1 / 4 GeV. The amplitude of the curvature perturbation is given by � V/m 4 � φ = φ 0 = 2 . 43 × 10 − 9 ( WMAP7 normalization ). ∆ 2 1 p R = 24 π 2 ǫ The spectrum of the tensor perturbation is given by � � ∆ 2 2 V h = . 3 π 2 m 4 φ = φ 0 P The number of e -folds after the comoving scale l 0 = 2 π/k 0 has crossed the horizon is given by � φ 0 � V 1 � N 0 = dφ . m 2 φ e V ′ p Inflation ends when max [ ǫ ( φ e ) , | η ( φ e ) | ] = 1 . 22 / 36

  23. R. Symmetry and Inflation [Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands ’94] [Lazarides, Schaefer, Shafi ’97][Senoguz, Shafi ’04; Linde, Riotto ’97] Attractive scenario in which inflation can be associated with symmetry breaking G − → H Simplest inflation model is based on W = κ S (Φ Φ − M 2 ) S = gauge singlet superfield, (Φ , Φ) belong to suitable representation of G Need Φ , Φ pair in order to preserve SUSY while breaking G − → H at scale M ≫ TeV, SUSY breaking scale. R-symmetry Φ Φ → Φ Φ , S → e iα S, W → e iα W ⇒ W is a unique renormalizable superpotential 23 / 36

  24. Tree Level Potential V F = κ 2 ( M 2 − | Φ 2 | ) 2 + 2 κ 2 | S | 2 | Φ | 2 SUSY vacua |� Φ �| = |� Φ �| = M, � S � = 0 4 � S �� M 2 0 2.0 1.5 V � Κ 2 M 4 1.0 0.5 0.0 1 0 � � �� M � 1 24 / 36

  25. Tree level + radiative corrections + minimal K¨ ahler potential yield: n s = 1 − 1 N ≈ 0 . 98 . δT/T proportional to M 2 /M 2 p , where M denotes the gauge symmetry breaking scale. Thus we expect M ∼ M GUT for this simple model. Since observations suggest that n s lie close to 0.97, there are at least two ways to realize this slightly lower value: (1) include soft SUSY breaking terms, especially a linear term in S ; (2) employ non-minimal K¨ ahler potential. r � 0 . 02 in these models 25 / 36

Recommend


More recommend