fuzzy logic
play

FUZZY LOGIC Felix Distel Dresden, WS 2012/13 About the Course - PowerPoint PPT Presentation

Faculty of Computer Science Chair of Automata Theory FUZZY LOGIC Felix Distel Dresden, WS 2012/13 About the Course Course Material Metamathematics of Fuzzy Logic by Petr Hjek available on course website: Slides Lecture Notes


  1. Faculty of Computer Science Chair of Automata Theory FUZZY LOGIC Felix Distel Dresden, WS 2012/13

  2. About the Course Course Material • Metamathematics of Fuzzy Logic by Petr Hájek • available on course website: – Slides – Lecture Notes (from a previous semester) – Exercise Sheets Contact Information • felix@tcs.inf.tu-dresden.de • lat.inf.tu-dresden.de/teaching/ws2012-2012/FL/ Exams Oral exams at the end of the semester or during semester break Fuzzy Logic TU Dresden, WS 2012/13 Slide 2

  3. Classical Logic • suited for properties that are – identifiable, – distinct, – clear-cut. • Examples: – days of the week, – marital status, – . . . Fuzzy Logic TU Dresden, WS 2012/13 Slide 3

  4. Imprecise Knowledge Is Italy a small country? Fuzzy Logic TU Dresden, WS 2012/13 Slide 4

  5. Imprecise Knowledge Is Italy a small country? Depends. Fuzzy Logic TU Dresden, WS 2012/13 Slide 4

  6. Imprecise Knowledge Is Italy a small country? Depends. Other examples for fuzzy proper- ties • old • warm • tall • . . . Fuzzy Logic TU Dresden, WS 2012/13 Slide 4

  7. Degrees of Membership large 1 0 . 8 truth degree 0 . 6 0 . 4 0 . 2 0 0 2 4 6 8 10 12 14 16 area in 10 6 km 2 Fuzzy Logic TU Dresden, WS 2012/13 Slide 5

  8. Degrees of Membership warm 1 0 . 8 truth degree 0 . 6 0 . 4 0 . 2 0 0 5 10 15 20 25 30 temperature in ◦ C Fuzzy Logic TU Dresden, WS 2012/13 Slide 6

  9. Crisp vs. Fuzzy Logics • Crisp Logics: Only truth values 1 and 0. = ⇒ characteristic function • Fuzzy Logics: Truth values from the interval [ 0 , 1 ] . = ⇒ membership function Fuzzy Logic TU Dresden, WS 2012/13 Slide 7

  10. Fuzzy vs. Probabilistic Logics Both use truth values • Fuzzy Logics: vagueness – statement is neither completely true nor false – e.g. “The Dresden TV Tower is a tall building. ” • Probabilistic Logics: belief or uncertainty – statement is either true nor false, but outcome unknown – e.g. “Tomorrow it will rain. ” Fuzzy Logic TU Dresden, WS 2012/13 Slide 8

  11. Question How to interpret conjunction? For the country of Turkey we might have: • membership in Huge : 0.046, • membership in Asian : 0.969 What is the membership degree of Turkey in Huge ⊓ Asian ? Fuzzy Logic TU Dresden, WS 2012/13 Slide 9

  12. Question How to interpret conjunction? For the country of Turkey we might have: • membership in Huge : 0.046, • membership in Asian : 0.969 What is the membership degree of Turkey in Huge ⊓ Asian ? Possible choices • Minimum of 0 . 046 and 0 . 969 • Product of 0 . 046 and 0 . 969 • . . . = ⇒ There is not just one fuzzy logic! Fuzzy Logic TU Dresden, WS 2012/13 Slide 9

  13. Generalize Operators Classical logical operators, such as • conjunction, • disjunction, • negation, and • implication need to be generalized. Generalizations should be • truth functional • “behave well” logically (e.g. conjunction should be associative, commutative, etc.) Fuzzy Logic TU Dresden, WS 2012/13 Slide 10

  14. t-Norms Definition Binary operator ⊗ : [ 0 , 1 ] × [ 0 , 1 ] → [ 0 , 1 ] • associative, • commutative, • monotone, and • has unit 1. Fuzzy Logic TU Dresden, WS 2012/13 Slide 11

  15. Continuous t-norms Fundamental continuous t-norms Gödel: x ⊗ y = min ( x, y ) 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 12

  16. Continuous t-norms Fundamental continuous t-norms Gödel: x ⊗ y = min ( x, y ) Product: x ⊗ y = x · y 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 12

  17. Continuous t-norms Fundamental continuous t-norms Gödel: x ⊗ y = min ( x, y ) Product: x ⊗ y = x · y Łukasiewicz: x ⊗ y = max ( 0 , x + y − 1 ) 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 12

  18. Truth Functions for Boolean Connectives Connective Truth Function Definition conjunction ( & ) t-norm ( ⊗ ) associative, commutative, monotone, unit 1, (usually also continuous) implication ( → ) ? negation ( ¬ ) ? disjunction ( ∨ ) ? Fuzzy Logic TU Dresden, WS 2012/13 Slide 13

  19. Generalizing Modus Ponens Modus Ponens in the Crisp Case φ ∧ ( φ → ψ ) then ψ . Fuzzy Generalization of Modus Ponens x ⊗ ( x ⇒ y ) ≤ y � �� � z Residuum Choose z maximal with this property: x ⇒ y = max { z | x ⊗ z ≤ y } Fuzzy Logic TU Dresden, WS 2012/13 Slide 14

  20. Uniqueness of Residuum Lemma 1.2 For every continous t-norm ⊗ x ⇒ y = max { z | x ⊗ z ≤ y } is the unique operator satisfying z ≤ x ⇒ y iff x ⊗ z ≤ y Fuzzy Logic TU Dresden, WS 2012/13 Slide 15

  21. Truth Functions for Boolean Connectives Connective Truth Function Definition conjunction ( & ) t-norm ( ⊗ ) associative, commutative, monotone, unit 1, (usually also continuous) implication ( → ) residuum ( ⇒ ) x ⊗ y ≤ z iff y ≤ x ⇒ z negation ( ¬ ) precomplement ⊖ x ⇒ 0 disjunction ( ∨ ) ? Fuzzy Logic TU Dresden, WS 2012/13 Slide 16

  22. Ordinal Sums Definition Given ( a i , b i ) , i ∈ I family disjoint open intervals, ⊗ i , i ∈ I family of t-norms � s − 1 � � s i ( x ) ⊗ i s i ( y ) if x, y ∈ ( a i , b i ) x ⊗ y = i min { x, y } otherwise where s i ( x ) = x − a i b i − a i is the ordinal sum � i ∈I ( ⊗ i , a i , b i ) . Fuzzy Logic TU Dresden, WS 2012/13 Slide 17

  23. Plots of Ordinal Sums x 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  24. Plots of Ordinal Sums y 1 0 . 7 0 . 3 x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  25. Plots of Ordinal Sums y 1 0 . 7 0 . 3 x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  26. Plots of Ordinal Sums y 1 Gödel 0 . 7 Łukasiewicz 0 . 3 Product x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  27. Plots of Ordinal Sums y 1 Gödel Gödel 0 . 7 Łukasiewicz 0 . 3 Product Gödel x 0 0 0 . 3 0 . 7 1 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  28. Plots of Ordinal Sums 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Fuzzy Logic TU Dresden, WS 2012/13 Slide 18

  29. Isomorphisms between t-norms Isomorphic t-norms If there is s is a bijective, monotone function s : [ 0 , 1 ] → [ 0 , 1 ] satisfying x ⊗ 1 y = s − 1 � � s ( x ) ⊗ 2 s ( y ) then ⊗ 1 and ⊗ 2 are called isomorphic . Fuzzy Logic TU Dresden, WS 2012/13 Slide 19

  30. Isomorphic t-norms 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 0.4 y 0.4 0.6 0.2 x 0.8 1 0 Łukasiewicz t-norm (aka 1st Schweizer-Sklar t-norm) x ⊗ y = max { x + y − 1 , 0 } Fuzzy Logic TU Dresden, WS 2012/13 Slide 20

  31. Isomorphic t-norms 0.8 0.6 x ⊗ y 0.4 0.2 1 0.8 0 0.6 0 0.2 y 0.4 0.4 0.6 0.2 x 0.8 1 0 2nd Schweizer-Sklar t-norm � max { x 2 + y 2 − 1 , 0 } x ⊗ y = Fuzzy Logic TU Dresden, WS 2012/13 Slide 20

  32. Basic Logic Syntax P countable set of propositional variables, ⊗ continuous t-norm. Formulas of PC ( ⊗ ) are • 0 , • p , • f 1 & f 2 , and • f 1 → f 2 . Semantics Valuation V : P → [ 0 , 1 ] Zero V ( 0 ) = 0 , Strong Conjunction V ( φ & ψ ) = V ( φ ) ⊗ V ( ψ ) , Implication V ( φ → ψ ) = V ( φ ) ⇒ V ( ψ ) . Fuzzy Logic TU Dresden, WS 2012/13 Slide 21

  33. Abbreviations φ ∧ ψ := φ &( φ → ψ ) , Weak Conjunction � � � � Weak Disjunction φ ∨ ψ := ( φ → ψ ) → ψ ( ψ → φ ) → φ ∧ Negation ¬ φ := φ → 0 Equivalence φ ≡ ψ := ( φ → ψ ) &( ψ → φ ) 1 := 0 → 0 . One Fuzzy Logic TU Dresden, WS 2012/13 Slide 22

  34. 1-Tautologies Formula φ such that V ( φ ) = 1 for every valuation V . Fuzzy Logic TU Dresden, WS 2012/13 Slide 23

  35. Different t-Norms, Different 1-Tautologies ¬¬ φ → φ Fuzzy Logic TU Dresden, WS 2012/13 Slide 24

  36. Different t-Norms, Different 1-Tautologies ¬¬ φ → φ • Łukasiewicz: V ( ¬¬ φ → φ ) = ⊖ ⊖ V ( φ ) ⇒ V ( φ ) � � = 1 − 1 − V ( φ ) ⇒ V ( φ ) = V ( φ ) ⇒ V ( φ ) = 1 1-tautology for Łukasiewicz Fuzzy Logic TU Dresden, WS 2012/13 Slide 24

  37. Different t-Norms, Different 1-Tautologies ¬¬ φ → φ • Łukasiewicz: V ( ¬¬ φ → φ ) = ⊖ ⊖ V ( φ ) ⇒ V ( φ ) � � = 1 − 1 − V ( φ ) ⇒ V ( φ ) = V ( φ ) ⇒ V ( φ ) = 1 1-tautology for Łukasiewicz • Gödel or Product: Not a 1-tautology! Assume V ( φ ) = 0 . 5, then V ( ¬¬ φ → φ ) = ⊖ ⊖ V ( φ ) ⇒ V ( φ ) = ⊖ 0 ⇒ V ( φ ) = 1 ⇒ 0 . 5 = 0 . 5 Fuzzy Logic TU Dresden, WS 2012/13 Slide 24

  38. 1-Tautologies for all t-Norms 1-tautologies 1-tautologies for ⊗ Ł for ⊗ min 1-tautologies for ⊗ Π Fuzzy Logic TU Dresden, WS 2012/13 Slide 25

  39. 1-Tautologies for all t-Norms 1-tautologies 1-tautologies for ⊗ Ł for ⊗ min 1-tautologies for ⊗ Π We are interested in 1-tautologies for all t-norms. Fuzzy Logic TU Dresden, WS 2012/13 Slide 25

Recommend


More recommend