future circular colliders
play

FUTURE CIRCULAR COLLIDERS join us! http:cern.ch/fcc-ee - PowerPoint PPT Presentation

FUTURE CIRCULAR COLLIDERS join us! http:cern.ch/fcc-ee http://espace2013.cern.ch/fcc/Pages/Science.aspx Alain Blondel FCC Future Circular Colliders 1994-1999: top mass predicted (LEP, mostly Z mass&width) top quark discovered (Tevatron)


  1. FUTURE CIRCULAR COLLIDERS join us! http:cern.ch/fcc-ee http://espace2013.cern.ch/fcc/Pages/Science.aspx Alain Blondel FCC Future Circular Colliders

  2. 1994-1999: top mass predicted (LEP, mostly Z mass&width) top quark discovered (Tevatron) t’Hooft and Veltman get Nobel Prize (c) Sfyrla Alain Blondel FCC Future Circular Colliders

  3. 1997-2013 Higgs boson mass cornered (LEP H, M Z etc +Tevatron m t , M W ) Higgs Boson discovered (LHC) Englert and Higgs get Nobel Prize (c) Sfyrla Alain Blondel FCC Future Circular Colliders

  4. Is it the end? Alain Blondel FCC Future Circular Colliders

  5. in 2010 Shaposhnikov and Wetterich predict m_H=126 GeV if there is no intermediate energy scale between the Fermi and Planck scales... Alain Blondel FCC Future Circular Colliders

  6. Is it the end? Certainly not! -- Dark matter -- Baryon Asymmetry in Universe -- Neutrino masses are experimental proofs that there is more to understand. We must continue our quest Alain Blondel FCC Future Circular Colliders

  7. at least 3 pieces are still missing Since 1998 it is established that neutrinos have mass and this very probably implies new degrees of freedom Alain Blondel FCC Future Circular Colliders

  8. And some say there MUST be new physics at TeV scale AB: or is it just that the SM scalar self energy can’t make sense perturbatively? Alain Blondel Future Circular Collider

  9. perhaps new world(s) of SM replicas? Extra-dimensions Super you Symmetry Funny it name Higgses Alain Blondel FCC Future Circular Colliders

  10. «We can extrapolate to the Planck scale» and «There MUST be new physics at TeV scale» are mutually exclusive. There is one way to find out: go look! Alain Blondel Future Circular Collider

  11. Nima Alain Blondel FCC Future Circular Colliders

  12. Nima At higher masses -- or at smaller couplings? Alain Blondel FCC Future Circular Colliders

  13. Alain Blondel FCC Future Circular Colliders

  14. LHC and HL-LHC pp and ee HE frontier Precision e+e- Alain Blondel FCC Future Circular Colliders

  15. Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018) Forming an international collaboration to study: • pp -collider ( FCC-hh ) � � � � defining infrastructure ⇒ 100 TeV pp in 100 km ~16 T ⇒ ⇒ ⇒ requirements ⇒ 100 TeV pp in 80 km ~20 T ⇒ ⇒ ⇒ • e + e - collider ( FCC-ee ) as potential intermediate step • p-e ( FCC-he ) option • 80-100 km infrastructure Alain Blondel FCC Future Circular Colliders in Geneva area

  16. possible long-term strategy FCC-ee (80-100 km, e + e - , 90-350 GeV LEP Interm. step PSB PS (0.6 km) LHC (26.7 km) HL-LHC SPS (6.9 km) FCC-hh ( pp , up to 100 TeV c.m.) Ultimate goal & e ± (120 GeV)– p (7, 16 & 50 TeV) collisions FCC-eh) ≥50 years of e + e - , pp , ep/A physics at highest energies Alain Blondel FCC Future Circular Colliders

  17. -- On CERN’s 60th birthday -- Future Circular Collider Study Kickoff Meeting Alain Blondel FCC Future Circular Colliders

  18. FCC Study Coordination Group Study Coordination M. Benedikt, F. Zimmermann Hadron Collider Physics and Experiments F. Gianotti, A. Ball, M. Mangano Lepton Collider Physics and Experiments A. Blondel, J. Ellis, P. Janot e-p Physics, Experiments, IP Integration M. Klein, O. Bruning Hadron Injectors B. Goddard Hadron Collider D. Schulte, M. Syphers, J.M. Jimenez Lepton Injectors Y. Papaphilippou (tbc) Lepton Collider J. Wenninger, U. Wienands, J.M. Jimenez Accelerator R & D Technologies M. Benedikt, F. Zimmermann Infrastructures and Operation P. Lebrun, P. Collier Costing Planning F. Sonnemann, P. Lebrun M. Benedikt M. Benedikt

  19. Proposal for FCC Study Time Line 2014 2015 2016 2017 2018 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Kick-off, collaboration forming, Prepare � study plan and organisation � � � Ph 1: Explore options “weak interaction” Workshop & Review � � identification of baseline � � Ph 2: Conceptual study of baseline “strong interact.” Workshop & Review, cost model, LHC results � � study re-scoping? � � Ph 3: Study consolidation Workshop & Review 4 large FCC Workshops � contents of CDR � � � distributed over Report participating regions Release CDR & Workshop on next steps Future Circular Collider Study 19 Michael Benedikt FCC Kick-Off 2014

  20. FCC-hh parameters – starting point Energy 100 TeV c.m. Dipole field ~ 16 T (Nb 3 Sn), [20 T option HTS] Circumference ~ 100 km #IPs 2 main (tune shift) + 2 5x10 34 cm -2 s -1 Luminosity/IP main Stored beam energy 8.2 GJ/beam Synchrotron radiation 26 W/m/aperture (filling fact. ~78% in arc) Long. emit damping time 0.5 h Bunch spacing 25 ns [5 ns option] already available 1x10 11 p Bunch population (25 ns) from SPS for 25 ns Transverse emittance 2.2 micron normalized #bunches 10500 Beam-beam tune shift 0.01 (total) β * 1.1 m (HL-LHC: 0.15 m) Ongoing discussion : should we go to 10 36 cm -2 s -1 ? Future Circular Collider Study 20 Michael Benedikt FCC Kick-Off 2014

  21. parameter LHC HL-LHC FCC-hh c.m. energy [TeV] 14 100 dipole magnet field [T] 8.33 16 (20) circumference [km] 36.7 100 (83) Cms energy luminosity [10 34 cm -2 s -1 ] 1 5 5 [→20?] Luminosity bunch spacing [ns] 25 25 {5} events / bunch crossing 27 135 170 {34} bunch population [10 11 ] 1.15 2.2 1 {0.2} norm. transverse emitt. [ µ m] 3.75 2.5 2.2 {0.44} IP beta-function [m] 0.55 0.15 1.1 IP beam size [ µ m] 16.7 7.1 6.8 {3} synchrotron rad. [W/m/aperture] 0.17 0.33 28 (44) critical energy [keV] 0.044 4.3 (5.5) 0.0072 0.0146 4.8 (5.8) total syn.rad. power [MW] 12.9 0.54 (0.32) longitudinal damping time [h]

  22. FCC-ee (=TLEP) Precision physics at the Electroweak scale TeraZ, OkuW, MegaHiggs and Megatops Alain Blondel Future Circular Collider

  23. Alain Blondel Future Circular Collider

  24. Original motivation: now that m_H and m_top are known, explore EW region with high precision with High Luminosity machine Discovery of New Physics in rare phenomena or precision measurements ILC studies � � need increase over LEP 2 (average) luminosity by a factor 1000 � � How can one do that without exploding the power bill? Answer is in the B-factory design: a very low vertical emittance ring with higher intrinsic luminosity . electrons and positrons have a much higher chance of interacting � much shorter lifetime (few minutes) � � � � feed beam continuously with a ancillary accelerator � � � Alain Blondel First look at the physics case of TLEP

  25. Alain Blondel FCC Future Circular Colliders

  26. Alain Blondel FCC Future Circular Colliders

  27. Alain Blondel FCC Future Circular Colliders

  28. Alain Blondel FCC Future Circular Colliders

  29. parameter LEP2 FCC-ee Z Z (c.w.) W H t E beam [GeV] 104 45 45 80 120 175 beam-beam par. ξ ξ y /IP ξ ξ 0.06 0.03 0.175 0.06 0.093 0.092 current [mA] 3.0 1450 1431 152 30 6.6 P SR,tot [MW] 22 100 100 100 100 100 no. bunches 4 16700 29791 4490 1360 98 N b [10 11 ] 4.2 1.8 1.0 0.7 0.46 1.4 ε ε ε ε x [nm] 22 29 0.14 3.3 0.94 2 ε ε y [pm] ε ε 250 60 1 1 2 2 β ∗ x [m] 1.2 0.5 0.5 0.5 0.5 1.0 β β ∗ β β ∗ ∗ ∗ y [mm] 50 1 1 1 1 1 σ ∗ y [nm] 3500 250 32 84 44 45 σ σ z,SR [mm] σ σ 11.5 1.64 2.7 1.01 0.81 1.16 σ σ σ σ z,tot [mm] (w beamstr.) 11.5 2.56 5.9 1.49 1.17 1.49 hourglass factor F hg 0.99 0.64 0.94 0.79 0.80 0.73 L /IP [10 34 cm -2 s -1 ] 0.01 28 212 12 6 1.7 Alain Blondel FCC Future Circular Colliders τ τ τ τ beam [min] 434 298 39 73 29 21

  30. Alain Blondel Future Circular Collider

  31. PUBLISHED Alain Blondel FCC Future Circular Colliders

  32. First look at the physics case of TLEP , arXiv:1308.6176v3 scoped the precision measurements: -- Model independent Higgs couplings and invisible width -- Z mass (0.1 MeV), W mass (0.5 MeV) top mass (~10 MeV), sin 2 eff , R b , N ν etc... W � powerful exploration of new physics with EW couplings up to very high masses � importance of luminosity and E beam calibration by beam depolarization up to W pair So far: simulations with CMS detector (Higgs) -- or «just» paper studies. Snapshot of novelties appeared in recent workshops Higher luminosity prospects at W, Z with crab-waist � sensitivity to right handed (sterile) neutrinos � s-channel e+e- � H(125.2) production almost possible ( � monochromators?) � rare Higgs Z W and top decays, FCNCs etc... � discovery potential for very small couplings http://cern.ch/FCC-ee � precision event generators (Jadach et al)

  33. Higgs factory (constrained fit 4 IPs (2 IPs) including ‘exotic’) 2 10 6 ZH events in 5 years «A tagged Higgs beam». sensitive to new physics in loops incl. invisible = (dark matter?) A big challenge, but unique: Higgs s-channel production at √ s = m H 10 4 events per year. Very difficult because huge background � total width � � � <1% and beam energy spread ~ 10 x Γ H 28% HHH (best at FCC-hh) from HZ thresh limits or signal? monochromators? 13% H tt from tt thresh Aleksan, D’Enterria, Woijcik (best at FCC-hh)

  34. the 10B$ ILC

  35. (0.05%)

Recommend


More recommend