Further exploitation of the RB framework Yvon Maday, Laboratoire Jacques-Louis Lions Sorbonne Université, Paris, Roscoff, France, Institut Universitaire de France Providence — February 2020 Mathematics of Reduced Order Models
Reduced Basis Methods is one of the way for Model Reduction
Vague Statements The idea is to use the fact that the « state » we are interested in is described by a quantity u ( x, t ; µ ) that is a function depending on space (and time) and a parameter µ
Parametric model manifold we introduce the set of all solutions to the mathematical model and assume it has a small Kolmogorov n-width
small Kolmogorov n-width means that there exists a small set of functions in or in Span { } such that, any u in is well approximated by a linear combination of these few functions
an example
Kolmogorov n-width Definition Let X be a normed linear space, S be a subset of X and X n be a generic n -dimensional subspace of X . The deviation of S from X n is E ( S ; X n ) = sup v n ∈ X n k u � v n k X . inf u ∈ S The Kolmogorov n -width of S in X is given by d n ( S , X ) = inf X n sup v n ∈ X n k u � v n k X inf u ∈ S The n -width of S thus measures the extent to which S may be approximated by a n -dimensional subspace of X .
How to get the Kolmogorov best space X n ??
How to get the Kolmogorov best space X n ?? X n optimal space is not attainable : an approximation can be given by PCA/SVD … based on some orthogonal decomposition another way is through greedy approach
<latexit sha1_base64="tzgXEMTARup4IKe9u1o/cyvdQtQ=">AC2nicjVHLSsNAFD2Nr1pfUXHlJrQVFEtJ3eiy6MZlBfsAW0ISRx2aF8lELMWNO3HrB+hWP0j8A/0L70xT8IHohCRnzr3nzNx7ncjiTDN15w2MTk1PZOfLczNLywu6csrSRMY5c13dAL45jJ8zjAWsKLjzWiWJm+47H2k7/QMblyxOeBgci0HEer59HvAz7tqCKEtfK5fTzSuLVwxh9StG10+3yuWCpZfMqmW8RPUMlCqF7vbDwAaof6CLk4RwkUKHwBGEPNhJ6TlCDiYi4HobExYS4ijNco0DalLIYZdjE9ul7TruTjA1oLz0TpXbpFI/emJQGNkgTUl5MWJ5mqHiqnCX7m/dQecq7DejvZF4+sQIXxP6lG2f+VydrETjDnqBU02RYmR1buaSq7ImxufqhLkEBEn8SnFY8KuUo7bChNomqXvbV/E1lSlbu3Sw3xbu8JQ249n2cP0Frp1ojfEST3sdo5bGOIjZpnruo4xANMl7iEc84VnrajfarXY3StVymWYVX5Z2/wEB2Jc3</latexit> <latexit sha1_base64="j1pQvRUbV7OCaYQRxUkAWyWMy1M=">AC2nicjVHLSsNAFD3Gd31VxZWb0EZQFEnd6LoxqWCtYVGSpKOdWheJDNiKW7ciVt/wK1+kPQP9C+8M03B6ITkpw5954zc+/1koBnwrYHY8b4xOTU9MxsYW5+YXGpuLxynsUy9VnNj4M4bXhuxgIesZrgImCNJGVu6AWs7nWPVLx+zdKMx9GZ6CXsInQ7Eb/kviuIahXLEtu3rT4jila3R3TCeWZRVaxbK9a+tl/gSVHJSrJWf7cVDtncTFVzhoI4YPiRAMEQThAC4yepqowEZC3AX6xKWEuI4z3KJAWklZjDJcYrv07dCumbMR7ZVnptU+nRLQm5LSxAZpYspLCavTB2X2lmxv3n3tae6W4/+Xu4VEitwRexfulHmf3WqFoFLHOgaONWUaEZV5+cuUndF3dz8VJUgh4Q4hdsUTwn7Wjnqs6k1ma5d9dbV8TedqVi19/NciXd1Sxpw5fs4f4Lzvd0K4VOa9CGawbrKGT5rmPKo5xghp59/GEZ7wYjnFn3BsPw1RjLNes4syHj8AWnmYvQ=</latexit> <latexit sha1_base64="j1pQvRUbV7OCaYQRxUkAWyWMy1M=">AC2nicjVHLSsNAFD3Gd31VxZWb0EZQFEnd6LoxqWCtYVGSpKOdWheJDNiKW7ciVt/wK1+kPQP9C+8M03B6ITkpw5954zc+/1koBnwrYHY8b4xOTU9MxsYW5+YXGpuLxynsUy9VnNj4M4bXhuxgIesZrgImCNJGVu6AWs7nWPVLx+zdKMx9GZ6CXsInQ7Eb/kviuIahXLEtu3rT4jila3R3TCeWZRVaxbK9a+tl/gSVHJSrJWf7cVDtncTFVzhoI4YPiRAMEQThAC4yepqowEZC3AX6xKWEuI4z3KJAWklZjDJcYrv07dCumbMR7ZVnptU+nRLQm5LSxAZpYspLCavTB2X2lmxv3n3tae6W4/+Xu4VEitwRexfulHmf3WqFoFLHOgaONWUaEZV5+cuUndF3dz8VJUgh4Q4hdsUTwn7Wjnqs6k1ma5d9dbV8TedqVi19/NciXd1Sxpw5fs4f4Lzvd0K4VOa9CGawbrKGT5rmPKo5xghp59/GEZ7wYjnFn3BsPw1RjLNes4syHj8AWnmYvQ=</latexit> <latexit sha1_base64="rHF0abh+71EBtN7lt/MqzAqRho=">AC2nicjVHLSsNAFD2Nr1pfVXHlJtgKFUpJ3Oiy6MZlBfuAtpQkndaheZFMxFLcuBO3/oBb/SDxD/QvDOmoBbRCUnOnHvPmbn32qHLY2EYrxltbn5hcSm7nFtZXVvfyG9uNeIgiRxWdwI3iFq2FTOX+6wuHBZK4yY5dkua9qjUxlvXrEo5oF/IcYh63rW0OcD7liCqF5+p1hMStc9XtZFb1TWO15yUCzmevmCUTHU0meBmYIC0lUL8i/oI8ADhJ4YPAhCLuwENPThgkDIXFdTIiLCHEVZ7hBjrQJZTHKsIgd0XdIu3bK+rSXnrFSO3SKS29ESh37pAkoLyIsT9NVPFHOkv3Ne6I85d3G9LdTL49YgUti/9JNM/+rk7UIDHCsauBU6gYWZ2TuiSqK/Lm+peqBDmExEncp3hE2FHKaZ91pYlV7bK3loq/qUzJyr2T5iZ4l7ekAZs/xzkLGocVk/C5UaiepKPOYhd7KNE8j1DFGWqok/cEj3jCs9bRbrU7f4zVcukm18W9rDB51/la4=</latexit> Vague Statements u ( x, t ; µ ) In order to determine : what do we have at end ? u ( x i , t k , µ ) a) possibly measures, either pointwize
<latexit sha1_base64="tzgXEMTARup4IKe9u1o/cyvdQtQ=">AC2nicjVHLSsNAFD2Nr1pfUXHlJrQVFEtJ3eiy6MZlBfsAW0ISRx2aF8lELMWNO3HrB+hWP0j8A/0L70xT8IHohCRnzr3nzNx7ncjiTDN15w2MTk1PZOfLczNLywu6csrSRMY5c13dAL45jJ8zjAWsKLjzWiWJm+47H2k7/QMblyxOeBgci0HEer59HvAz7tqCKEtfK5fTzSuLVwxh9StG10+3yuWCpZfMqmW8RPUMlCqF7vbDwAaof6CLk4RwkUKHwBGEPNhJ6TlCDiYi4HobExYS4ijNco0DalLIYZdjE9ul7TruTjA1oLz0TpXbpFI/emJQGNkgTUl5MWJ5mqHiqnCX7m/dQecq7DejvZF4+sQIXxP6lG2f+VydrETjDnqBU02RYmR1buaSq7ImxufqhLkEBEn8SnFY8KuUo7bChNomqXvbV/E1lSlbu3Sw3xbu8JQ249n2cP0Frp1ojfEST3sdo5bGOIjZpnruo4xANMl7iEc84VnrajfarXY3StVymWYVX5Z2/wEB2Jc3</latexit> <latexit sha1_base64="j1pQvRUbV7OCaYQRxUkAWyWMy1M=">AC2nicjVHLSsNAFD3Gd31VxZWb0EZQFEnd6LoxqWCtYVGSpKOdWheJDNiKW7ciVt/wK1+kPQP9C+8M03B6ITkpw5954zc+/1koBnwrYHY8b4xOTU9MxsYW5+YXGpuLxynsUy9VnNj4M4bXhuxgIesZrgImCNJGVu6AWs7nWPVLx+zdKMx9GZ6CXsInQ7Eb/kviuIahXLEtu3rT4jila3R3TCeWZRVaxbK9a+tl/gSVHJSrJWf7cVDtncTFVzhoI4YPiRAMEQThAC4yepqowEZC3AX6xKWEuI4z3KJAWklZjDJcYrv07dCumbMR7ZVnptU+nRLQm5LSxAZpYspLCavTB2X2lmxv3n3tae6W4/+Xu4VEitwRexfulHmf3WqFoFLHOgaONWUaEZV5+cuUndF3dz8VJUgh4Q4hdsUTwn7Wjnqs6k1ma5d9dbV8TedqVi19/NciXd1Sxpw5fs4f4Lzvd0K4VOa9CGawbrKGT5rmPKo5xghp59/GEZ7wYjnFn3BsPw1RjLNes4syHj8AWnmYvQ=</latexit> <latexit sha1_base64="j1pQvRUbV7OCaYQRxUkAWyWMy1M=">AC2nicjVHLSsNAFD3Gd31VxZWb0EZQFEnd6LoxqWCtYVGSpKOdWheJDNiKW7ciVt/wK1+kPQP9C+8M03B6ITkpw5954zc+/1koBnwrYHY8b4xOTU9MxsYW5+YXGpuLxynsUy9VnNj4M4bXhuxgIesZrgImCNJGVu6AWs7nWPVLx+zdKMx9GZ6CXsInQ7Eb/kviuIahXLEtu3rT4jila3R3TCeWZRVaxbK9a+tl/gSVHJSrJWf7cVDtncTFVzhoI4YPiRAMEQThAC4yepqowEZC3AX6xKWEuI4z3KJAWklZjDJcYrv07dCumbMR7ZVnptU+nRLQm5LSxAZpYspLCavTB2X2lmxv3n3tae6W4/+Xu4VEitwRexfulHmf3WqFoFLHOgaONWUaEZV5+cuUndF3dz8VJUgh4Q4hdsUTwn7Wjnqs6k1ma5d9dbV8TedqVi19/NciXd1Sxpw5fs4f4Lzvd0K4VOa9CGawbrKGT5rmPKo5xghp59/GEZ7wYjnFn3BsPw1RjLNes4syHj8AWnmYvQ=</latexit> <latexit sha1_base64="rHF0abh+71EBtN7lt/MqzAqRho=">AC2nicjVHLSsNAFD2Nr1pfVXHlJtgKFUpJ3Oiy6MZlBfuAtpQkndaheZFMxFLcuBO3/oBb/SDxD/QvDOmoBbRCUnOnHvPmbn32qHLY2EYrxltbn5hcSm7nFtZXVvfyG9uNeIgiRxWdwI3iFq2FTOX+6wuHBZK4yY5dkua9qjUxlvXrEo5oF/IcYh63rW0OcD7liCqF5+p1hMStc9XtZFb1TWO15yUCzmevmCUTHU0meBmYIC0lUL8i/oI8ADhJ4YPAhCLuwENPThgkDIXFdTIiLCHEVZ7hBjrQJZTHKsIgd0XdIu3bK+rSXnrFSO3SKS29ESh37pAkoLyIsT9NVPFHOkv3Ne6I85d3G9LdTL49YgUti/9JNM/+rk7UIDHCsauBU6gYWZ2TuiSqK/Lm+peqBDmExEncp3hE2FHKaZ91pYlV7bK3loq/qUzJyr2T5iZ4l7ekAZs/xzkLGocVk/C5UaiepKPOYhd7KNE8j1DFGWqok/cEj3jCs9bRbrU7f4zVcukm18W9rDB51/la4=</latexit> <latexit sha1_base64="2ghF3uPcfuKDZN1SH9XMHcW8Mo=">AC9XicjVHLThsxFD1MXxBom5YlG6sEBFKEJt2UJWo3WQaJABKDopmJASvzksfDQxFSv6K7qpu+QG28AtV/wD+gmMzSFBUgUdjH597z7Gvb1QkqjS+/3fCe/Hy1es3k1ON6Zm37943P3zcLPNKx7If50mut6OwlInKZN8ok8jtQswjRK5FY2+2fjWodSlyrMNc1LI3Tcz9SeikNDatD0W61AZUYEh6EuDtRgrNqjU7F03DbLouIiTFsEabUshsdiaFqtxqA576/4bojHoFOD+bXFoPsdQC9v/kGAIXLEqJBCIoMhThCi5LeDnwU5HYxJqeJlItLnKJBbcUsyYyQ7IjzPnc7NZtxbz1Lp45SsJfUymwQE3OPE1sTxMuXjlny/7Pe+w87d1OuEa1V0rW4IDsU7q7zOfqbC0Ge1h1NSjWVDjGVhfXLpV7FXtzca8qQ4eCnMVDxjVx7JR37ycpnS127cNXfzKZVrW7uM6t8K1vSUb3Pm3nY/B5ueVDvE6O/0Vt2MSc/iEJfbzC9bQRQ9ev/AOS5w6R15P71f3u/bVG+i1sziwfDObgDEO6FV</latexit> <latexit sha1_base64="S+sGdEU40Rdmz6g68nGPFyvcjw=">AC9XicjVG7ThwxFD0MCY+FwEJKGisCKQVmk0TSpQ0lERiAYlBy8ysAWvnJY+Hh1b8Qep0dChtfiBt0uQDEH9A6vxAjs0gJUFR8Gjs43PvOfb1jYpElcb3b0e80WfPx8YnJhtT0y9mZptz8ztlXulYduM8yfVeFJYyUZnsGmUSuVdoGaZRInejwTsb3z2VulR5tm0uCnmQhseZOlJxaEj1mn6rFajMiOA01MWJ6g1Ve3ApVs7bZlVUXIRpiyCtVkX/XPRNq9XoNRf9Nd8N8Rh0arC4sRxsfj8/nMrb94gQB85YlRIZHBECcIUfLbRwc+CnIHGJLTRMrFJS7RoLZilmRGSHbA+Zi7/ZrNuLepVPHPCXhr6kUWKImZ54mtqcJF6+cs2X/5T10nvZuF1yj2isla3BC9n+6h8yn6mwtBkdYdzUo1lQ4xlYX1y6VexV7c/FbVYOBTmL+4xr4tgpH95ZOE3pardvG7r4ncu0rN3HdW6FH/aWbHDn73Y+Bjuv1zrE79npt7gfE1jAK6ywn2+wgU1soUvj/iCr/jmnXlX3rX36T7VG6k1L/H8D7/AoQ/o38=</latexit> <latexit sha1_base64="S+sGdEU40Rdmz6g68nGPFyvcjw=">AC9XicjVG7ThwxFD0MCY+FwEJKGisCKQVmk0TSpQ0lERiAYlBy8ysAWvnJY+Hh1b8Qep0dChtfiBt0uQDEH9A6vxAjs0gJUFR8Gjs43PvOfb1jYpElcb3b0e80WfPx8YnJhtT0y9mZptz8ztlXulYduM8yfVeFJYyUZnsGmUSuVdoGaZRInejwTsb3z2VulR5tm0uCnmQhseZOlJxaEj1mn6rFajMiOA01MWJ6g1Ve3ApVs7bZlVUXIRpiyCtVkX/XPRNq9XoNRf9Nd8N8Rh0arC4sRxsfj8/nMrb94gQB85YlRIZHBECcIUfLbRwc+CnIHGJLTRMrFJS7RoLZilmRGSHbA+Zi7/ZrNuLepVPHPCXhr6kUWKImZ54mtqcJF6+cs2X/5T10nvZuF1yj2isla3BC9n+6h8yn6mwtBkdYdzUo1lQ4xlYX1y6VexV7c/FbVYOBTmL+4xr4tgpH95ZOE3pardvG7r4ncu0rN3HdW6FH/aWbHDn73Y+Bjuv1zrE79npt7gfE1jAK6ywn2+wgU1soUvj/iCr/jmnXlX3rX36T7VG6k1L/H8D7/AoQ/o38=</latexit> <latexit sha1_base64="vqrdpqStU5GzB3uiEnstyZkX5zE=">AC9XicjVHLSgMxFD2Or1pfVZdugq1gocjUjS5FNy4r2FqwUmamsYbOi0ymVkp/w507cesPuNVfEP9A/8KbOIPRDNMcnLuPSe5uW7si0TZ9vOYNT4xOTWdm8nPzs0vLBaWlhtJlEqP173Ij2TdRLui5DXlVA+b8aSO4Hr82O3t6/jx30uExGFR+oy5qeB0w3FmfAcRVS7YJdKLREq1uo7Mj4X7aGo9EZsY1BRZbSwlSFtYK0zDoD1lGlUr5dKNqbthnsJ6hmoIhs1KLCE1roIKHFAE4QijCPhwk9J2gChsxcacYEicJCRPnGCFP2pSyOGU4xPZo7tLuJGND2mvPxKg9OsWnX5KSYZ0EeVJwvo0ZuKpcdbsb95D46nvdkmrm3kFxCqcE/uX7iPzvzpdi8IZdkwNgmqKDaOr8zKX1LyKvjn7VJUih5g4jTsUl4Q9o/x4Z2Y0ialdv61j4i8mU7N672W5KV71LanB1e/t/AkaW5tVwod2cXcva3UOq1jDBvVzG7s4QA18r7CPR7waF1Y19aNdfueao1lmhV8GdbdG12Un8s=</latexit> Vague Statements u ( x, t ; µ ) In order to determine : what do we have at end ? u ( x i , t k , µ ) a) possibly measures, either pointwize R ϕ i,k ( x, t ) u ( x, t, µ ) dxdt or moments
Recommend
More recommend