from wigner function approach
play

from Wigner function approach Gao Jian-Hua Shandong University, - PowerPoint PPT Presentation

( ) WEIHAI The second order anomalous currents from Wigner function approach Gao Jian-Hua Shandong University, Weihai, China 1. arXiv:2003.04517 S.Z. Yang, J.H. Gao, Z.T. Liang, Q. Wang 2. arXiv:2005.08512 R.H. Fang, J.H. Gao,


  1. ( 威 海 ) WEIHAI The second order anomalous currents from Wigner function approach Gao Jian-Hua Shandong University, Weihai, China 1. arXiv:2003.04517 S.Z. Yang, J.H. Gao, Z.T. Liang, Q. Wang 2. arXiv:2005.08512 R.H. Fang, J.H. Gao, D.F. Hou, C. Zhang 3. arXiv:2002.04800 R.H. Fang, J.H. Gao 4. arXiv:1910.11060 J.H. Gao, Z.T. Liang, Q. Wang 5. arXiv:1810.02028 J.H. Gao, J. Y. Pang, Q. Wang 6. arXiv:1802.06216 J.H. Gao, Z.T. Liang, Q. Wang, X.N. Wang QCD theory Seminars JP, Jun 8 2020 1

  2. Outline • Introduction • Wigner functions up to 2 nd order • Charge currents and stress tensor up to 2 nd order • The conservation laws and chiral anomaly • Summary 2

  3. Chiral Effects in HIC First order currents! Chiral Magnetic Effect Chiral Vortical Effect Made by Chun Shen Chiral Separate Effect Local Polarization Effect Kharzeev, Prog.Part.Nucl. (2014) ; Huang, Rept. Prog. Phys. (2016) ; Kharzeev, Liao, Voloshin Prog.Part.Nucl. (2016); JHG, Ma, Pu, Wang , 2005.10432 A review for Nucl. Sci. Tech 3

  4. Theoretical methods Quantum Field Theory Kharzeev PRD(2009), Landsteiner PRL(2011), Fukushima NPA(2010), Hou JHEP(2011) …… Anomalous Hydrodynamics Gauge/Gravity Duality Made by Chun Shen first order: Erdmenger JHEP(2009) Son PRL(2009) CME CVE Yee JHEP(2009) Yee PRC(2014) CSE LPE Rebhan JHEP(2010); Yin PLB(2016) Lin PRD(2013) …… Hongo PLB(2017) … … Wigner function approach Chiral Kinetic theory Gao PRL(2012) Stephanov PRL(2012) Chen PRL (2013) Son PRD (2013) Hidaka PRD(2017) Manuel PRD (2014) Yang PRD(2018)…… Huang PLB(2018)…… 4

  5. Why Second Order Correction • Large vorticity and magnetic fields in heavy ion collisions! • Causal issue in first order relativistic hydrodynamics! Made by Chun Shen • Coupling terms between vorticity and electromagnetic fields! • Check the perturbation formalism! 5

  6. Previous research Quantum Field Theory: Jimenzez-Alba PRD(2015) Hattori PRL(2016) Gauge/Gravity Duality Anomalous Hydrodynamics Made by Chun Shen Banerjee JHEP(2012) Kharzeev PRD(2011) second order Bhattacharyya JHEP(2014) correction Megias JHEP 2014 Bu 1912.11277 Chiral Kinetic theory Wigner function approach Satow PRD(2014) Hidaka, Pu, Yang PRD(2018) Hidaka, Yang PRD(2018) Gorbar PRD(2017) PRD(2017) Yang, JHG, Liang, Wang 2003.04517 Abbasi JHEP(2019) 6

  7. Wigner operator in QFT Density matrix in QED : Gauge link / Wilson line: Wigner operator: Straight line path Particle density at 𝑦 with kinetic momentum 𝑞 : Heinz, PRL 1983; Elze NPB 1986 7

  8. Wigner function and equation Unnormal ordered : Wigner function Normal ordered : Dirac equation in background electromagnetic field : Wigner equation : Vasak AP1987 The Wigner function in Wigner equation must be unnormal ordered! 8

  9. Chiral limit 16 Wigner functions: scalar pseudo vector axial tensor 32 Wigner equations: Imaginary parts Real parts Chiral limit 𝑛 =0 8 functions +16 equations 8 functions +16 equations 9

  10. Right/Left-handed Basis Chirality basis: Right: 𝑡 = +1 Left: 𝑡 = −1 4 independent functions + 8 coupled equations 10

  11. Disentanglement Theorem Component decomposition : Auxiliary 𝑜 𝜈 can be identified as the 4-velocity of reference frame ! Semiclassical expansion: Only is independent : 1 function + 1 equation It has been proved as a theorem up to any order of ℏ ! arXiv:1802.06216 JHG, Z.T. Liang, Q. Wang, X.N. Wang Phys.Rev. D98 (2018) 11

  12. Distribution function in different frames Transformation rule of distribution function in different frames 𝑜 and 𝑜′ : Side jump Non-trivial transformation and chiral vortical effect: 𝑜 𝜈 = 𝑣 𝜈 𝛾 𝜈 = 𝑣 𝜈 /𝑈 Spin-vorticity Magnetization coupling arXiv:1810.02028 JHG, J. Y. Pang, Q. Wang Phys. Rev. D 100 (2019) 12

  13. Covariant perturbation expansion Wigner equation in static and uniform EM field : 𝜈 & 𝐺 𝜈𝜉 expansion 𝜖 𝑦 semiclassical expansion Wigner equation order by order: Iterative equation 13

  14. The zeroth order solution The 0 th order equations: The 0 th order solution: Fermi-Dirac distribution: Impose transport equation: Vlasov equation 14

  15. Constraint conditions Global equilibrium condition : Integrability condition : constant : constant Find the solution under global equilibrium with constant 𝑮 𝝂𝝃 and 𝛁 𝝂𝝃 ! 15

  16. The first order solution General form for the 1 st order solution: Further determine and : set The 1 st order solution: 16

  17. The second order solution General form for the 2 nd order solution: Similar to 1 st order, we can determine and set The 2 nd order solution: 17

  18. Solution up to 2 nd order The solution under global equilibrium with constant 𝑮 𝝂𝝃 and 𝛁 𝝂𝝃 : 18

  19. Charge currents at 0 th order Left-handed or right-handed current: Vector and axial currents: Charge currents at 0 th order: Left/right: Vector: Axial: 19

  20. Charge currents at 1 st order Charge currents at 1 st order: Left/right: Vector: Axial: Electric part and magnetic part decomposition: 20

  21. Charge currents at 2 nd order Left-handed/Right-handed currents at 2 nd order: Anomalous magneto-vorticity coupling K. Hattori, Y. Yin PRL2016 Charge density Hall current from 𝑮 𝝂𝝃 Hall current from the coupling of 𝑮 𝝂𝝃 and 𝛁 𝝂𝝃 21

  22. Charge currents at 2 nd order Charge currents at 2 nd order: Charge density Vector: Hall current Axial: Charge density Hall current 22

  23. Hall currents from EM field LH / RH Hall coefficient from EM field: |𝜈 𝑡 ≪ 𝑈 |: |𝜈 𝑡 ≫ 𝑈 |: Vector and axial Hall coefficient: |𝜈 𝑡 ≫ 𝑈 |: |𝜈 𝑡 ≪ 𝑈 | 23

  24. Stress tensor at 0 th and 1 st order Canonical stress tensor: Total stress tensor up to 1 st order: Symmetric Antisymmetric Energy density: 24

  25. Stress tensor at 2 nd order Decomposition : v : vorticity tensor e : electromagnetic tensor 25

  26. The “ vv ” and “ ve ” contribution Moments expansion: Scalar: The “ vv ” and “ ve ” contributions: 26

  27. The “ ee ” contribution Dimensional regularization: Electromagnetic field contributions: 27

  28. Ultraviolet divergence 𝜗 around 𝜗 = 0 : Expand 𝜆 𝑡 Ultraviolet logarithmic divergence Total stress tensor by summing RH and LH: 28

  29. Trace of the stress tensor Traceless stress tensor order by order: Separate contribution from pure electromagnetic field: 29

  30. EM field contribution Revisit divergence part: Trace anomaly for QED: The total stress tensor by including the quantum correction from gauge field: Trace anomaly: 30

  31. The conservation Law Constraint conditions Conservation Laws Symmetric and antisymmetric part of stress tensor: Chiral anomaly: How does the chiral anomaly emerges from quantum kinetic theory? 31

  32. Chiral anomaly in QKT Chiral anomaly from chiral kinetic theory: particle antiparticle Berry curvature: Berry monopole: Stephanov & Yin PRL 109,(2012)162001, Son & Yamamoto PRD 87 (2013) 8, 085016 32

  33. Chiral anomaly in QKT Fujikawa et al PRA2005,PRD2005,PRD2006 Berry’s phase and chiral anomaly basically different Mueller et al PRD2017,PRD2018,PRD2019 Berry’s phase and chiral anomaly arise from different part Hidaka et al PRD2018 Chiral anomaly from the non-trivial boundary condition JHG et al PRD2018 New possible source term contributing to chiral anomaly Yee et al PRD2020 Chiral anomaly and Berry connection from Feynman diagram 33

  34. Chiral anomaly from Dirac sea Wigner equation: Take difference and integrate over 𝑞 : Chen, Pu, Q. Wang & X.N. Wang PRL2013 4d Berry monopole 3d Berry monopole ArXiv:1910.11060 JHG, Z.T. Liang, Q. Wang; ArXiv:2002.04800 R.H. Fang, JHG 34

  35. CKE Particle vs Antiparticle ∞ 𝑒𝑞 0 0 𝑒𝑞 0 CKE for particle by ׬ CKE for antiparticle by ׬ 0 −∞ Null normal contribution Chiral anomaly: Dirac sea contribution 35

  36. Chiral anomaly for massive fermion Chiral anomaly for massive fermion: Chiral anomaly for massive fermion from Wigner equation: = Modified Berry curvature: No exact Berry monopole: ArXiv:1910.11060 JHG, Z.T. Liang, Q. Wang; ArXiv:2002.04800 R.H. Fang, JHG 36

  37. Nonperturbative calculation Chiral fermion in uniform magnetic field. The summation over Landau levels can be transformed into integration by Abel-Plana formula Normal ordered energy density for the righthand: Unnormal ordered energy density for the righthand: ArXiv:2005.08512 R.H. Fang, JHG, D.F. Hou, C. Zhang 37

  38. Summary • The charge currents and stress tensor up to second order ℏ have been obtained from Wigner function approach. • The charge and energy densities and the pressure have contributions from the vorticity and electromagnetic field at the second order. • The vector and axial Hall currents can be induced along the direction orthogonal to the vorticity and electromagnetic field at the second order. • Chiral anomaly in quantum kinetic theory can be derived from the Dirac sea or the vacuum contribution in the un-normal-ordered Wigner function. Thanks for your attention! 38

Recommend


More recommend