From Quarks to Neutron Stars T. Hatsuda Director RIKEN Interdisciplinary Theoretical Science Research Group OIST Seminar (July 11, 2016)
RIKEN (理研) http://www.riken.jp/en/about/ ・ Largest National Institute in Japan About 2000 scientists, 9 domestic campuses, 4 overseas branches ・ Founded 1917 ・ Basic researches on Physics, Chemistry, Engineering, Biology, Medical Science iTHES Wako iTHES Kobe
Interdisciplinary Theoretical Science (iTHES) Research Group iTHES promotes interdisciplinary collaborations among theorists in fundamental physics, material science, biological science, computational science and mathematics.
iTHES: vertical & horizontal structure Theory Labs. In RIKEN Life Material Physical Science Science Science Mathematical science K computer(AICS) Multi-scale Multi-scale Multi-scale Computational Problems in Problems in problems in science Condensed biology the Universe matters Advisory expt. Labs. in RIKEN
iTHES PIs (Physics, Chemistry, Biology, Computational Science, Mathematics) Ithes-math Ithes-phys Ithes-cond Ithes-bio Ithes-cs T. Hatsuda (RNC) F. Nori (CEMS) A. Mochizuki (ILs) S. Nagataki (ILs) T. Miyoshi (AICS) A. Furusaki (ILs/CEMS) E. Hiyama (RNC) S. Yunoki (Ils/CEMS/AICS) Y. Sugita (ILs/AICS) T. Nakajima (AICS) iTHES 連携研究者 ~ 50 iTHES Junior Researchers (recruited internationally) iTHES N. Iizuka K. Uriu M. Taki Y. Yokokura String theory Theoretical biology Senior Fellow Math. physics Black hole & Cond. Matter & collective cellular & meta-materials & Information theory à Osaka Behaviors à Kanazawa I. Yu S. Wanajyo Y. Sakai Molecular dynamics K. Meda Nuclear Computational biology & system biology Applied mathematics astrophysics & particle physics G. Baym (UIUC) & Metabolic network → Sophia U. physsics à Kansei gakuin T. Kanazawa P. Ghosh M. Hongo Nuclear theory Dissipative dynamics Y.Kamiya Nuclear physics & math. science & photosynthesis Condensed matter & Statistical mechanics à Kolkata & Compt. Physics C. Beauchemin( Ryerson) Beom Hyun Kim à RIKEN SPDR K. Uchinomiya K. Bliokh biology Material science Mathematical biology Quantum optics W. Nishima & Compt. physics & statistical mechanics & Mathematical phys. Molecular dynamics à CEMS & bioinformatics à LANL X. Plat R. Johannsson K. Kyutoku Cond. math N. Yamanaka K. Aihara (U. Tokyo) Condense matter Astrophysics & Comp. Science applied mathematics Particle theory & Comp. physics & Compt. physics & Comp. science à Rakuten à FEFU X.Y.Lu A.Tanaka T. Oyamada Quantum information String theory Quantum Chemistry &Material design & Math. physics & Comp. Science F. Marchesoni (INFN) à Huazhong astrophyiscs
iTHES project reported in NATURE In 2013, he (Tetsuo Hatsuda) joined the RIKEN research institute in Wako, Japan, and launched an interdisciplinary team of theoretical physicists, chemists and biologists to work out techniques that will accelerate all three fields. He hopes that the effort will stimulate more interdisciplinary work in the country. He says. “Theoretical science is a good starting point because it is easy for us to interact.”
From Quarks to Neutron Stars
Dark Big Bang Energy Universe Standard Model of Elementary Particles
Expanding Universe and Evolution of Matter 10 10 K 2700 K 10 12 K BIG BANG
Galaxy Solar system Human DNA 10 23 [cm] 10 12 [cm] 10 2 [cm] 10 -7 [cm] We are made of elementary particles 10 -8 [cm] < 10 -17 [cm] 10 -13 [cm] 10 -12 [cm] Atom Nucleus Proton/Neutron
Known Elementary Particles Matter particles (spin=1/2) Gauge fields (spin=1) Quarks II I III Strong force gluon charm top up EM force Leptons down bottom strange photon Weak force e-neutrino mu-neutrino tau-neutrino tau muon W-boson Z-boson electron Higgs field (spin=0)
Quantum Chromo Dynamics (QCD) Fundamental theory for matter - nucleon Neutron star nucleus r ~ 1 [fm]=10 -13 [cm] r ~ 10 [fm] =10 -12 [cm] r ~ 10 [km] QCD = SU(3) quantum gauge theory for color charges ( B, R, G ) I II III Heavy quarks Light quarks M. Kobayashi m c ~ 1.3 GeV m u ~ 2 MeV m b ~ 4.2 GeV m d ~ 5 MeV Y. Nambu m t ~ 171 GeV (1921-2015) m s ~ 90 MeV T. Maskawa Fundamental theory of strong int. = Quantum Chromo Dynamics (QCD) Characteristic strong int. scale ~ (1fm) -1 ~ 200 MeV Y. Nambu
Key “quantum” aspect of QCD -- Anti-screening of color charges -- Quark Confinement Asymptotic freedom
Quark Confinement – Mathematical Challenge -- Millennium Problems by Clay Mathematics Institute (May 24, 2000) http://www.claymath.org/millennium-problems 1. Yang–Mills and Mass Gap 2. Riemann Hypothesis 3. P vs. NP Problem 4. Navier–Stokes Equation 5. Hodge Conjecture 7. Poincaré Conjecture 8. Birch and Swinnerton-Dyer Conjecture Official description of Problem1 (A. Jaffe and E. Witten)
Lattice QCD -- a clue to attach the challenge -- K. Wilson gluons U μ quarks q (1936-2013) on the links on the sites a 4-dim. Euclidean L Lattice • well defined statistical system (finite a and L) Monte Carlo simulations • gauge invariant on supercomputers • fully non-perturbative
Quark Confinement from Lattice QCD simulations V(r)
How atomic nucleus is formed ? Original question asked Modern question to be by H. Yukawa (1935) answered from quarks & gluons
How atomic nucleus is formed ? Original question asked Modern question to be by H. Yukawa (1935) answered from quarks & gluons Ishii, Aoki, Hatsuda (2007)
Nuclear iPS Cell Force from QCD 石井理修 山中伸弥 青木慎也 高橋和利 初田哲男
MEXT HPCI Program (2011-) Field 1 – Field 5
K computer (RIKEN) QCD simulations Nuclear simulations Neutron star simulations Proton & Neutron Nuclei Neutron star R ~ 10 -13 cm R ~ 10 -12 cm R ~ 10 km Rare Isotope factory Gravitational wave detector Proton accelerator RIBF ( RIKEN ) KAGRA ( U. Tokyo ) J-PARC ( KEK-JAEA )
Neutron Star as a giant nucleus ・ M ~ (1-2)M ☉ ・ R ~ 10km ・ 0 < ρ < 10 ρ 0 composition ・ nuclei ・ neutrons & protons ・ mesons (π, K ) ・ hyperons (Λ, Σ - , Ξ - ) ・ quarks (u,d,s) + leptons (e, μ)
Short history of NS obs. 1932 Discovery of the neitron J. Chardwick 1934 Prediction of neutron star W. Baade and F. Zwicky 1968 Discovery of pulsar S. J. Bell and A. Hewish 1974 Discovery of binary neutron star R. A. Hulse and J.H. Taylor 1979 Discovery of SGR( magnetar ?) 1982 Discovery of millisecond pulsar D. Backer et al. 2010 Discovery of massive neutron star P. Detmorest et al. 2010 CAS- A cooling curve C.O.Heinke and W.C.G.Ho 201 6 Discovery of gravitational waves from BH merger (LIGO) ( 201X Discovery of gravitational wave from NS merger )
Neutron Star in Okinawa
Basic equations for neutron star 1. Tolman-Oppenheimer-Volkoff equation ß General Relativity (TOV ) 2. Equation of state P=P(ε) ß Strong Int. (QCD) (EOS ) EM int. (charge neutrality) Weak int. (β equilibrium)
Schematic Mass-Radius relation From Yagi, Miake and Hatsuda, “Quark-Gluon Plasma”, Cambridge Univ. Press (2008)
Neutron Star as a giant nucleus ・ M ~ (1-2)M ☉ ・ R ~ 10km ・ 0 < ρ < 10 ρ 0 composition ・ nuclei ・ neutrons & protons ・ mesons (π, K ) ・ hyperons (Λ, Σ - , Ξ - ) ・ quarks (u,d,s) + leptons (e, μ)
QCD Phase diagram Quark-Gluon Plasma 〈 qq 〉 〈 qq 〉 Attractive Bose-Fermi Mixture chiral superfluid ⇔ color superconductor Quantum Simulation of QCD Matter by Cold Atoms ? ⇔ Induced superfluid Fermi-Bose mixture K. Maeda, G. Baym & T. Hatsuda, Phys.Rev.Lett.103 (’09); Phys. Rev. A87 (2013)
Birth of NS : Supernova Explosion World’s first successful supernova explosion in 3D simulation with neutrino transport (2013) Club Nebula 1000 km T. Takiwaki (iTHES Associate) K computer @RIKEN 10.51 PFLOPS, 705,024 CPU Cores
neutrino energy density [log erg/cc] NS merger à Gravitational wave distance [km] hard EOS soft EOS Gravitational Wave Detectors (e.g. KAGRA) Kyutoku (iTHES fellow) et al, PRL 107 (2011); PTEP (2013)
NS merger à Origin of elements neutrino energy density [log erg/cc] distance [km] mass number 10 -2 solar r-abundance mass-averaged 10 -3 10 -4 First nuleosynthesis study based on abundance Full 3D general relativistic simulations 10 -5 With neutrino transport. 10 -6 10 -7 Wanajo ( ithes fellow) et al., 10 -8 Ap.J. Lett. 789 (2014) L39 0 50 100 150 200 250 mass number
Unification of forces Gravitational force Einstein Newton TOE ? Strong Nambu force Yukawa Grand Unified Theory Weak force Fermi Electro -Weak Theory Electromagnetic Weinberg force Maxwell NOW (2015)
Fundamental questions in 21th physics 1. Matter under Extreme Conditions 2. Origin of Dark Matter 3. Origin of Dark Energy 4 . Extra dimensions 5. Quantum gravity …
Thank you !
Recommend
More recommend