from microstructure properties
play

from microstructure properties to macroscopic I. Mechanical - PowerPoint PPT Presentation

Mechanical property from microstructure properties to macroscopic I. Mechanical properties of crystals 2 Elastic moduli: isotropic form of Hookes law - Stress for isotropic elasticity - Strain for isotropic elasticity - Bulk Modulus -


  1. Mechanical property from microstructure properties to macroscopic

  2. I. Mechanical properties of crystals 2

  3. Elastic moduli: isotropic form of Hooke’s law - Stress for isotropic elasticity - Strain for isotropic elasticity - Bulk Modulus - Shear Modulus - Young Modulus - Poison ratio - P-wave modulus 4

  4. Requirements and relations of constants 5

  5. Elastic stiffness tensor - 81 independent components - 36 independent components h.l. - 21 independent components 6

  6. Voigt notation - Vectors of stress and strain - Hooke’s law, using the Voigt notation 7

  7. Kelvin notation - Weight matrix Dellinger, J., Vasicek, D., & Sondergeld, C. (1998). Kelvin Notation for Stabilizing Elastic-Constant Inversion. 8 Revue de l’Institut Français Du Pétrole , 53(5), 709 – 719.

  8. Third-order nonlinear elasticity Shear (transverse) plane wave Plane longitudinal (pressure) pulse wave - third-order nonlinear elasticity, the strain energy function E (for arbitrary anisotropy) Milholland, P., Manghnani, M.H., Schlanger, S.O., and Sutton, G.H., 1980. Geoacoustic modeling of deep-sea carbonate sediments. J. Acoust. Soc. Am., 68, 1351 – 1360 9

  9. Phase velocities - phase velocity of wave propagation, for isotropic symmetry For transversely isotropic: - quasi-longitudinal mode - quasi-shear mode - pure shear mode Milholland, P., Manghnani, M.H., Schlanger, S.O., and Sutton, G.H., 1980. Geoacoustic modeling of deep- sea carbonate sediments. J. Acoust. Soc. Am., 68, 1351 – 1360 10

  10. Elastic eigentensors - For an isotropic material, Hooke’s law - the strain energy U for an isotropic material 11

  11. Modules defined for anisotropic elastic materials Transversely isotropic (TI) material with uniaxial stress: -Transversely isotropic Young’s modulus - TI Poisson ratios 12

  12. Compliance matrix for anisotropic elastic materials 13

  13. Thomsen’s notation for weak elastic anisotropy - Thomsen’s notation - Berryman extends the validity of Thomsen’s expressions for P - and quasi SV-wave velocities - For weak anisotropy, the constant e 14

  14. Requirements to Thomsen`s notation - an additional anellipticity parameter 15

  15. 4-order nonlinear elasticity - The apparent fourth-rank stiffness 16

  16. DFT methods of calculating mechanical properties • Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations • Universal linear-independent coupling strains 17

  17. Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations Trends in the elastic response of binary early transition metal nitrides David Holec,1,* Martin Friak, ´ 2 Jorg Neugebauer, ¨ 2 and Paul H. Mayrhofer1 1Department of Physical Metallurgy and Materials Testing, Montanuniversitat Leoben, Franz-Josef-Strasse 18, AT-8700 Leoben, 18 Austria ¨ 2Max-Planck-Institut fur Eisenforschung GmbH, Max-Planck-Strasse 1, DE-40237 D ¨ usseldorf, Germany

  18. Universal linear-independent coupling strains σ 𝑗 = 𝐷 𝑗𝑘 ε 𝑘 220 51,6 51,6 0 0 0 51,6 220 51,6 0 0 0 51,6 51,6 220 0 0 0 0 0 0 3,65 0 0 0 0 0 0 3,65 0 0 0 0 0 0 3,65 Siesta Kelvin Matrix First-Princiyles Calculation of Stress O. H. Nielsen and Richard M. Martin Xerox Palo Alto Research 19 Centers, Palo Alto, California 94304 (Received 20 December 1982)

  19. II. Material models 20

  20. Linear Elasticity models (LEM): - Orthotropic Linear Elasticity - Transversely Isotropic Linear Elasticity 21

  21. Example of LEM Partial Strain energy 25 Strain Energy kJ 20 15 10 5 0 0 0,1 0,2 0,35 0,575 0,9125 1 Time, sec Mises stress 6000 Stress, Gpa 4000 2000 0 0 0,1 0,2 0,345 0,575 0,9125 1 Time, sec 22

  22. Border cases of plastic models • Elastoplastic Material Model - Perfect plasticity - Isotropic strain hardening - Isotropic stress softening Buckley, C., Harding, J., Hou, J., Ruiz, C., Trojanowski, A.: Deformation of thermosetting resins at impact 23 rates of strain. Part I: experimental study. J. Mech. Phys. Solids 49(7), 1517 – 1538 (2001)

  23. Constitutive Mathematics of Elasto- Plasticity • Onset of Yield • Yield Criterion 24

  24. The hardening • The Isotropic Hardening • The Kinematic Hardening 25

  25. Johnson-Cook Plasticity (JC) - The Johnson-Cook hardening formulation Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various 26 strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31 – 48.

  26. Johnson-Cook plasticity models parameters for some metals 27

  27. Example of JC model Partial Strain energy Energy, kJ 400 350 300 250 200 150 100 50 0 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 Time, sec Mises stress Stress, GPa 120 100 80 60 40 20 0 Time, sec 28

  28. Viscoelasticity relaxation creep 29

  29. Constitutive Models • Constitutive Models for Creep Response • Constitutive Models for Stress Relaxation Response 30

  30. Dynamic Viscoelasticity 31

  31. The Standard Linear Solid Viscoelastic Model McCrum, N., Buckley, C., Bucknall, C.: Principles of Polymer Engineering. Oxford Science Publications, Oxford 32 University Press (1997)

  32. The Standard Linear Solid Viscoelastic Model 33

  33. The Generalized Maxwell Model (GM) McCrum, N., Buckley, C., Bucknall, C.: Principles of Polymer Engineering. Oxford Science 34 Publications, Oxford University Press (1997)

  34. Example of GM model Total energy Energy, kJ 0 0,00 1,30 2,60 3,90 5,20 6,50 7,80 9,10 10,40 11,70 13,00 14,30 15,60 16,90 18,20 19,50 -0,0005 -0,001 Time, sec Mises Stress, Pa 150000 100000 50000 0 0,00 0,10 0,20 0,30 Time, sec 35

  35. Temperature Dependence and Viscoelasticity -Arrhenius equation - Williams-Landel-Ferry (WLF) equation 36

  36. Nonlinear Elasticity Helmholtz free-energy function: 37

  37. Classes Hyperelastic Material Models Phenomenological models Mechanistic models • • Saint-Venant Kirchoff Neo-Hookean • • Polynomial Arruda-Boyce • Ogden • Edwards-Vilgris • Mooney-Rivlin • Yeoh 38

  38. Neo-Hookean Hyperelastic Material Model (NHHM) 39

  39. Example of NH model Energy, kJ -200 -150 -100 100 150 -50 50 0 Stress, GPa 0,00 0 1 2 3 0,05 0,000 0,07 0,07 0,059 0,07 0,073 Mises stress 0,08 0,075 0,08 0,078 0,08 0,09 0,092 0,09 0,093 0,09 0,095 0,09 0,101 0,09 0,109 0,10 Time, sec 0,11 0,110 0,11 0,110 0,11 0,11 40

  40. Arruda-Boyce Hyperelastic Model Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber 41 Chem. Technol. 73(3), 504 – 523 (2000)

  41. Example of AB model Energy, kJ Stress, GPa 10 15 20 25 30 0 5 0 1 2 3 0,000 0,000 0,018 Partial Strain energy 0,018 0,020 0,020 0,022 0,022 Mises stress 0,023 0,023 0,024 0,025 0,026 0,026 0,027 0,027 0,028 0,029 0,029 0,030 0,030 0,031 0,032 0,033 0,033 0,034 Time, sec 0,034 Time, sec 0,035 0,036 0,037 0,037 42

  42. Edwards-Vilgis Hyperelastic Model - strain energy due to cross-links -the strain energy due to slip-links Edwards, S., Vilgis, T.: The effect of entanglements in rubber elasticity. Polymer 27(4), 483 – 492 (1986) 43

  43. Stress Formulation for Hyperelastic Material Models • Incompressible material with strain energy of form • Incompressible material with strain energy of form • Nominal stress for an incompressible material • Compressible material with strain energy of form • Nominal stress for an Compressible material: 44

  44. III. Finite Elements Method 45

  45. Computer-aided engineering ( CAE ) Computer-aided engineering ( CAE ) is the broad usage of computer software to aid in engineering analysis tasks. It includes finite element analysis (FEA), computational fluid dynamics (CFD), multibody dynamics (MBD), durability and optimization. It is included with computer- aided design (CAD) and computer-aided manufacturing (CAM) in the collective abbreviation "CAx 46

  46. Finite Element Method 47

  47. Numerical Methods for Computational Mechanics 48

  48. The Need for the Finite Element Method • The PDE should have a solution that exists; • The solution must be unique; and finally, • The solution of the PDE should change continuously with the initial (boundary) conditions defined for the PDE Limitations: • The overly stiff/locking problem • The stress accuracy problem • Mesh distortion problem • Element shape problem • Discontinuity conundrum 49

  49. Mesh Elements 51

  50. Elements type 52

  51. Mathematical theorems for mechanical calculation with FEM • Jacobian using Newton method • Cauchy-Green function • Boundary conditions: Dirichlet- Neumann • Von-Mises 54

  52. Mechanical application of FEM (Abaqus simulations) 56

  53. Dynamic analysis (Abaqus simulations) 58

  54. Dynamic analysis example (electromagnetic stamping) matrx inductor workpeace Inductor current density distribution 60

  55. Dynamic analysis example (LS-Dyna) Distribution of Lorentz forces in the workpiece and inductor in vector form The distribution of current density in the workpiece 61

Recommend


More recommend