frg beyond the local potential approximation at finite
play

FRG beyond the local potential approximation at finite temperature - PowerPoint PPT Presentation

FRG beyond the local potential approximation at finite temperature Alexander Stegemann Cold Quantum Coffee Heidelberg University 23 January 2018 Overview Strong interaction Running coupling, QCD confinement, asymptotic freedom, . . .


  1. FRG beyond the local potential approximation at finite temperature Alexander Stegemann Cold Quantum Coffee Heidelberg University — 23 January 2018

  2. Overview Strong interaction Running coupling, QCD confinement, asymptotic freedom, . . . Attempts to solve QCD [C. Patrignani et al. , Chin. Phys. , 2016] Lattice QCD Effective theories FRG DSEs 1

  3. Functional renormalisation group

  4. Wilsonian renormalisation • Euclidean generating functional for a scalar field ϕ � � � � d 4 x J ( x ) ϕ ( x ) Z [ J ] = D ϕ exp − S [ ϕ ] + • Wilsonian renormalisation � � � � � d 4 x J ( x ) ϕ ( x ) Z [ J ] = D ϕ q ≤ k D ϕ q > k exp − S [ ϕ ] + � �� � ≡ Z k [ J ] → Integrate out modes successively 2

  5. b b b Flow in theory space (1) c 1 Γ k = Λ = S Γ k = 0 = Γ c 2 c 3 3

  6. Introducing a scale dependence • Generating functional � � � � d 4 x J ( x ) ϕ ( x ) Z k [ J ] = D ϕ exp − S [ ϕ ] − ∆ S k [ ϕ ] + • Regulator insertion � d 4 p ∆ S k [ ϕ ] = 1 ( 2 π ) 4 ϕ ( p ) R k ( p 2 ) ϕ ( − p ) 2 • Effective average action ( φ ( x ) = � ϕ ( x ) � ) �� � d 4 x J ( x ) φ ( x ) − ln Z k [ J ] Γ k [ φ ] = sup − ∆ S k [ φ ] J 4

  7. Wetterich equation • (Exact) Wetterich equation �� � ∂ k Γ k = 1 � − 1 Γ ( 2 ) 2 STr + R k ∂ k R k k • Regulator R k ensures correct integration limits k → Λ k → 0 Γ k − − − → S Γ k − − − → Γ • No sign problem 5

  8. b b b Flow in theory space (2) c 1 Γ k = Λ = S R 1 R 2 R 3 Γ k = 0 = Γ c 2 c 3 6

  9. Solving the Wetterich equation • (Exact) Wetterich equation �� � ∂ k Γ k = 1 � − 1 Γ ( 2 ) 2 STr + R k ∂ k R k k • In practice, truncations are needed • Derivative expansion � � � + 1 ( ∂ µ φ ) 2 + . . . � φ 2 � � φ 2 � d 4 x Γ k = U k 2 Z k 7

  10. b b b Flow in theory space (3) c 1 Γ k = Λ = S R 1 R 2 R 3 Γ k = 0 = Γ c 2 c 3 8

  11. Quark-meson model in LPA

  12. Quark-meson model in LPA • The quark-meson model is a low-energy effective model for two-flavour QCD • Local potential approximation = lowest order derivative expansion � � ✯ 1 ✟ � + 1 2 ✟✟✟ ✘ ( ∂ µ φ ) 2 ✘✘ � φ 2 � � φ 2 � d 4 x Γ k = U k Z k + . . . • Ansatz for the effective average action of the quark-meson model � � � ψ + 1 � / � 2 ( ∂ µ φ ) 2 + U k � φ 2 � ¯ d 4 x Γ k = ψ ∂ − µγ 0 + h Σ 5 − c σ π ) T Σ 5 = ( σ + i γ 5 � π� τ ) , φ = ( σ,� 9

  13. Flow equation for U k • Using a 3-dimensional Litim regulator � � � E ψ + µ � � E ψ − µ �� k 4 − 2 N c N f ∂ k U k = tanh + tanh 12 π 2 E ψ 2 T 2 T � E σ � E π � � � + 1 + 3 coth coth E σ 2 T E π 2 T σ = k 2 + m 2 σ = k 2 + 2 U ′ k + 4 � σ � 2 U ′′ E 2 k π = k 2 + m 2 π = k 2 + 2 U ′ E 2 k ψ = k 2 + m 2 ψ = k 2 + h 2 � σ � 2 E 2 10

  14. Numerical solution • Discretise the partial differential equation ∂ k U k • Tune the UV parameters in the vacuum ( m Λ , λ Λ , c , h ) = 1 Λ φ 2 + 1 � φ 2 � � φ 2 � 2 2 m 2 U Λ 4 λ Λ MeV 800 700 600 m Σ 500 400 m Ψ 300 200 m Π 100 Σ 0 0 k in MeV 40 200 400 600 800 1000 11

  15. Inconsistencies in LPA • Pion curvature and pole masses show a large discrepancy in the vacuum m π, curv ≈ 138 MeV m π, pole ≈ 100 MeV [J. Wambach et al. , arXiv: 1712.02093v1 [hep-ph]] • “Wrong” shape of the first-order transition line [R.-A. Tripol et al. , arXiv: arXiv:1709.05991 [hep-ph]] 12

  16. Quark-meson model in LPA ′

  17. Quark-Meson Model in LPA ′ • LPA ′ = including a scale dependent wave function renormalisation � � � � φ 2 � + 1 ✘ � φ 2 � ( ∂ µ φ ) 2 ✘✘ � d 4 x Γ k = U k 2 Z k + . . . � • Ansatz for the purely bosonic part of the quark-meson model � 1 � � 2 Z σ ( ∂ µ σ ) 2 + 1 π ) 2 + U k ( φ 2 ) − c σ d 4 x Γ k , B = 2 Z π ( ∂ µ � • Flow equations for the wave function renormalisations � ∂ � δ δ ∂ k Z α ∼ δφ α ( p ) ∂ k Γ k α ∈ { σ, π } ∂ p 2 δφ α ( − p ) p = 0 13

  18. Including a finite temperature • The time direction becomes compactified � β � � β = 1 d 4 x − d 3 x → d τ T 0 • p 0 becomes discrete (Matsubara frequencies) ω n = 2 n π T for bosons ν n = ( 2 n + 1 ) π T for fermions � � d 4 p d 3 p � ( 2 π ) 4 − → T ( 2 π ) 3 n ∈ Z 14

  19. Including a finite temperature • Ansatz for the purely bosonic part of the quark-meson model � β � � 1 σ ( ∂ 0 σ ) 2 + 1 d 3 x 2 Z � 2 Z ⊥ σ ( ∂ i σ ) 2 Γ k , B = d τ 0 � + 1 π ) 2 + 1 π ) 2 + U k ( φ 2 ) − c σ 2 Z � 2 Z ⊥ π ( ∂ 0 � π ( ∂ i � • Flow equations for the perpendicular wave function renormalisations � � � � ∂ δ δ ∂ k Z ⊥ α ∼ δφ α ( p ) ∂ k Γ k ∂ | � p | 2 δφ α ( − p ) p 0 = 0 � p = 0 • Flow equations for the parallel wave function renormalisations � � ∂ k Γ ( 2 ) k ,α ( p 0 = 2 π T ) − ∂ k Γ ( 2 ) k ,α ( p 0 = 0 ) ∂ k Z � α = ( 2 π T ) 2 � p = 0 15

  20. Flow equation for U k • Using a 3-dimensional Litim regulator � E ψ + µ � E ψ − µ � k 4 − 2 N c N f � � �� ∂ k U k = tanh + tanh 12 π 2 E ψ 2 T 2 T � E σ � E π � � Z ⊥ + 3 Z ⊥ � 1 − η σ � � � 1 − η π � σ π + coth coth Z � Z � 5 2 T 5 2 T σ E σ π E π � � k + 4 � σ � 2 U ′′ k 2 + 2 U ′ σ = Z ⊥ E 2 σ k Z � Z ⊥ σ σ � � k 2 + 2 U ′ π = Z ⊥ E 2 π k Z � Z ⊥ π π 16

  21. Numerical solution • Discretise the partial differential equation ∂ k U k • Tune the UV parameters in the vacuum ( m Λ , λ Λ , c , h ) = 1 Λ φ 2 + 1 � φ 2 � � φ 2 � 2 2 m 2 U Λ 4 λ Λ MeV 800 700 600 500 m Σ 400 m Ψ 300 200 m Π 100 Σ 0 0 k in MeV 10 200 400 600 800 1000 17

  22. Wave function renormalisations � ∂ � δ δ Z α ∼ δφ α ( p )Γ k α ∈ { σ, π } ∂ p 2 δφ α ( − p ) p = 0 σ = σ k 18

  23. Scale dependence • Curvature masses and wave function renormalisations • Evaluating at the scale dependent minimum of U k T = 10 MeV, µ = 0 MeV MeV 800 3 Z Σ � 700 Z Π � 600 2.5 500 m Σ 400 2 m Ψ Z Π � 300 200 1.5 m Π Z Σ � 100 Σ 0 0 k in MeV 1 k in MeV 10 200 400 600 800 1000 10 200 400 600 800 1000 19

  24. Wave function renormalisations � ∂ � δ δ ∂ k Z α ∼ ∂ k δφ α ( p )Γ k α ∈ { σ, π } ∂ p 2 δφ α ( − p ) p = 0 σ = σ k → additional term ∼ ∂ k σ k � ∂ � δ δ ∂ k Z α ∼ ∂ k δφ α ( p )Γ k α ∈ { σ, π } ∂ p 2 p = 0 δφ α ( − p ) σ = σ fix → no additional term � ∂ � δ δ ∂ k Z α ∼ δφ α ( p ) ∂ k Γ k α ∈ { σ, π } ∂ p 2 δφ α ( − p ) p = 0 20

  25. Correct IR values • Curvature masses and wave function renormalisations • Evaluating at the IR minimum T = 10 MeV, µ = 0 MeV MeV 800 2.5 Z Π 700 � 600 Z Σ � 500 m Σ 2 400 m Ψ Z Π � 300 1.5 200 m Π Z Σ � 100 Σ 0 0 k in MeV 1 k in MeV 10 200 400 600 800 1000 10 200 400 600 800 1000 21

  26. Correct scale dependence • Curvature masses and wave function renormalisations • Iterative procedure to obtain the correct scale dependence T = 10 MeV, µ = 0 MeV MeV 2.5 Z Π 800 � 700 600 Z Σ � 2 500 m Σ 400 Z Π � m Ψ 300 1.5 200 m Π Z Σ � 100 Σ 0 0 k in MeV 1 k in MeV 10 200 400 600 800 1000 10 200 400 600 800 1000 22

  27. Increasing the temperature 2.5 Z Π � Z Σ � 2 Z Π � 1.5 Z Σ � 1 T in MeV 10 100 200 300 23

  28. Summary

  29. Conclusion and outlook • Using truncations beyond LPA is important to get consistent results in the quark-meson model • Using a 3-dimensional regulator causes a large splitting between Z � and Z ⊥ at low temperature → Extend the calculations to the whole phase diagram → Calculate mesonic spectral functions → Use a 4-dimensional regulator → Include Z ψ and h k 24

Recommend


More recommend