SPE London Section Evening Meeting Fractured Horizontal Well Decline SPE London Section Meeting Branimir Cvetkovic, Ph.D. Bayerngas Norge AS, Oslo, Norway The Geological Society, Piccadilly London September 28 th 2010 1
Overview of Presentation • Motivation • Objectives • Main Challenges • Implementation - Type Curves • Model Validations - Case Studies Motivation • Model Summary • Risk Analysis Workflow • Concluding Remarks • Acknowledgments 2
Rate - Time Type Curves • Empirical Arps’ rate-time curves (1945) • Fetkovich’s composite transient-depletion rate-time curves (1973, 1980) Harmonic q Hyperbolic b Exponential t Motivation D T r D 3
Vertical Well Well Model Wellbore Model Surface Model } Reservoir Model Horizontal Well Motivation 4
Overall Objectives Fractured horizontal well model • Full-time scope screening analysis tool for modelling of flow from a reservoir to a fractured well • Selected pressure-rate wellbore conditions with late-time approximations Objectives • Validation (case studies with model comparisons) • Risk Analysis Workflow 5
Main Challanges Horizontal well with fractures • Modelling features – Design-integration – Validation • Model – Changing IBC Main Challanges • From constant rate to constant pressure • Fracture responses • Late time approximations – Equivalent well radius – Equivalent fracture half-length 6
Late-Time Approximations for Rates (Horizontal Well with N Fractures) N r r wv Approximations L f 1 r wv1 e Main Challanges 1 1 L e r 1 1 cot L 1 L r r 2 f f (1 ) 2 2 4 2 r wv2 r e 2 e L e f 2 2 4 2 1 L L 1 2 2 cot log(1 ) r r r 2 L f 2 3 9 3 3 f exp e r r wv3 2 3 2 4 2 1 (1 ) e r r L 1 2 cot log r e 2 2 1 3 2 1 4 f r r 7
Reservoir, Well and Fracture Input (Horizontal Well with N Fractures) • Reservoir – Isotropic – Non-isotropic • Horizontal well – No flow to the wellbore Implementation – Direct flow to the wellbore – Wellbore friction • Model Boundary Conditions – Inner BC – Outer BC 8
Stepwise Constant Pressure IBC (3 intervals) Individual Fracture Rate q (bbl/d) 5 0 0 0 1 8 0 0 0 4 5 0 0 1 6 0 0 0 Infinite Conductivity Fracture 4 0 0 0 1 4 0 0 0 Rate q (bbl/d) Finite Conductivity Fracture 3 5 0 0 1 2 0 0 0 3 0 0 0 1 0 0 0 0 2 5 0 0 8 0 0 0 2 0 0 0 6 0 0 0 Implementation 1 5 0 0 4 0 0 0 1 0 0 0 2 0 0 0 5 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Cumulative production Q (bbl) F ra c tu re q fr1 a n d q fr5 - in fin ite c o n d u c tiv ity flo w F ra c tu re q fr2 a n d q fr4 - in fin ite c o n d u c tiv ity flo w F ra c tu re q fr3 - in fin ite c o n d u c tiv ity flo w F ra c tu re q fr1 a n d q fr5 - fin ite c o n d u ctivity flo w F ra c tu re q fr2 a n d q fr4 - fin ite c o n d u ctivity flo w F ra c tu re q fr3 - fin ite c o n d u ctivity flo w R a te , q in fin ite c o n d u ctivity fra c tu re s R a te , q fin ite c o n d u c tiv ity fra c tu re s 9
IBC Changing from Constant Rate to Constant Pressure 4000 8000 Δ p (psi) IBC of Constant: Rate 3500 7000 Pressure 3000 6000 Rate q (bbl/d) Pressure difference 2500 5000 2000 4000 Implementation Variable Wellbore Rate 1500 3000 Wellbore Pressure 1000 2000 500 1000 0 0 0 100 200 300 400 500 600 700 Time t (d) 10
Field A - North Sea • Horizontal well with fractures – 9 injection wells – 11 production wells Model Validation • Provided data for: – 2-oil production wells • 14 fractures – A water injection well • 16 fractures 11
The Model vs. Observed Cumulative Production Match 1 4 0 0 0 0 0 0 1 2 0 0 0 0 0 0 Cumulative production Q (bbl) 1 0 0 0 0 0 0 0 8 0 0 0 0 0 0 6 0 0 0 0 0 0 Model Validation L f PP 4 0 0 0 0 0 0 36 50 34 40 2 0 0 0 0 0 0 20 40 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 Time t (d) M odel cu m ulative ra te (Lf= 20, P P = 40) M o del c um ulativ e rate (L f=3 4, P P =40 ) 12 W e ll c u m ula tiv e rate M o del c um ulativ e rate (L f=3 6, P P =50 )
IBC Changing from Constant Rate to Constant Pressure 100000 100000 Pressure difference [Pi-Pwf] (psi) 10000 10000 Rate q (bbl)/d 1000 1000 100 100 Constant Rate, IBC Model Validation 10 10 Constant Pressure, IBC Pressure-difference varies Rate varies for the 1 1 constant Pressure-difference IBC 0.1 0 0 500 1000 1500 2000 2500 3000 3500 Time t (d) Model - Variable Pressure Difference, Pi-Pwf Constant Rate, q IBC Well_Pressure_Difference Conatant Pressure, Pi-Pwf IBC Model - Variable Well with Fractures Rate, q Well_Rates 13
Stepwise Constant Rate IBC (1 and 3 intervals) 5000 5000 Match 4000 4500 4500 Δ p(psi) Δ p(psi) 3500 Match Match 4000 4000 3000 Rate q (bbl/d) 3500 3500 Pressure difference Pressure difference 2500 3000 3000 2500 2500 2000 Implementation 2000 2000 1500 1500 1500 1000 1000 1000 500 500 500 0 0 0 0 0 500 500 0 500 Time t (d) Time t (d) 14
Water Injection Case 30000 40000000 Qumulative injection Q (bbl) 35000000 25000 Injection rate q (bbl/d) 30000000 20000 25000000 15000 20000000 15000000 10000 10000000 Model Validation 5000 5000000 0 0 0 500 1000 1500 2000 2500 Ti t (D ) Time t (d) Model - Water injection rate, qw Water Injection Rate Model - Cumulative water injection, Qw Fracture injection rate (equal for fracture 1 and 14) Fracture injection rate (equal for fracture 7 and 8) Well cumulative water injection 15
Field V - North Sea 7 7 MFHOW-MODEL DATA MFHOW-MODEL DATA Productivity Index PI [bbl/(d Psi)] 6 6 Fracture Permeability, kf (Fracture width w=0.008 ft) Fracture Permeability, kf (Fracture width w=0.008 ft) 50 D 50 D PI, Productivity index PI, Productivity index 5 5 15 D 15 D PI, Productivity index PI, Productivity index 2.5 D 2.5 D PI, Productivity index PI, Productivity index 4 4 Model Validation 3 3 2 2 WELL DATA WELL DATA 1 1 0 0 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 Time t (d) 16
Late-Time Approximations for Rates Rate vs. time match for: 7000 7000 A transient rate calculated data A transient rate calculated data 6000 6000 for the vertical well with a for the vertical well with a 5000 5000 derived effective well radius derived effective well radius r ef 4000 4000 3000 3000 2000 2000 • A fractured horizontal well (2 transversal A horizontal well with two A horizontal well with two 1000 1000 fractures) vs. vertical well with transversal fractures transversal fractures 0 0 calculated effective radius 0 0 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000 4500 4500 5000 5000 14000 14000 A transient rate calculated data for the A transient rate calculated data for the 12000 12000 horizontal well with a derived horizontal well with a derived equivalent fracture half-length equivalent fracture half-length 10000 10000 8000 8000 Model Validation 6000 6000 L ef 4000 4000 • A fractured horizontal well (3- 2000 2000 A horizontal well with three transversal fractures A horizontal well with three transversal fractures transversal fractures) vs. a single 0 0 0 0 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000 4500 4500 5000 5000 transversal fractured horizontal well 14000 A transient rate calculated data for the A transient rate calculated data for the horizontal well with a derived horizontal well with a derived with calculated effective half-length 12000 equivalent fracture half-length equivalent fracture half-length 10000 • A fractured horizontal well (3- ) 8000 q ( longitudinal fractures) vs. a single 6000 longitudinal fractured horizontal well 4000 with calculated effective half-length 2000 A horizontal well with three longitudinal fractures A horizontal well with three longitudinal fractures 17 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
The Horizontal Fractured Well Model- Concluding Remarks • A fast and robust algorithm is developed – transient (SLAB model) – basic depletion (BOX model) • The bringing together of – rate-time and Model Summary – pressure-time analyses • The semi-analytical tool aids in – optimizing the well production – screening analysis – the late-time approximations were verified 18
Define the Model Gathering Data 0 0 Semi-Analytical 0 0 Simulations Risk Analysis - Workflow 0 Of the Provided Input 0 0 Using the Model Reusults 0 2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 180000 Match Observed Well with Fractures Data Phase A: Matching production profiles for the Fixed Number of Fractures 19
Recommend
More recommend