foundations of computer science lecture 14 advanced
play

Foundations of Computer Science Lecture 14 Advanced Counting - PowerPoint PPT Presentation

Foundations of Computer Science Lecture 14 Advanced Counting Sequences with Repetition Union of Overlapping Sets: Inclusion-Exclusion Pigeonhole Principle Last Time To count complex objects, construct a sequence of instructions that can


  1. Foundations of Computer Science Lecture 14 Advanced Counting Sequences with Repetition Union of Overlapping Sets: Inclusion-Exclusion Pigeonhole Principle

  2. Last Time To count complex objects, construct a sequence of “instructions” that can be used to construct the object uniquely. The number of possible sequences of instructions equals the number of possible complex objects. 1 Sum and product Rules. 2 Build-up counting: � n � , n -bit sequences with k 1’s; goody-bags. k 3 Counting one set by counting another: bijection. 4 Permutations and combinations. 5 Binomial Theorem. Creator: Malik Magdon-Ismail Advanced Counting: 2 / 11 Today →

  3. Today: Advanced Counting Sequences with repetition. 1 Anagrams. Inclusion-exclusion: extending the sum-rule to overlapping sets. 2 Derangements. Pigeonhole principle. 3 Social twins. Subset sums. Creator: Malik Magdon-Ismail Advanced Counting: 3 / 11 Counting Sequences →

  4. Selecting k from n Distinguishible Objects no repetition with repetition k -sequence k -subset Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  5. Selecting k from n Distinguishible Objects no repetition with repetition n ! k -sequence ( n − k )! k -subset Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  6. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )! k -subset Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  7. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !    = k -subset k k !( n − k )! Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  8. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  9. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence (5 , 4 , 3) -sequence of 5 , 4 , 3 Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  10. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence (5 , 4 , 3) -sequence of 5 , 4 , 3 1 2 3 4 5 6 7 8 9 10 11 12 Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  11. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 1 2 3 4 5 6 7 8 9 10 11 12 subset of slots used for each type type - { 1 , 3 , 4 , 7 , 11 } Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  12. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 � 7 � Then choose slots for : ways 4 1 2 3 4 5 6 7 8 9 10 11 12 subset of slots used for each type type - type - { 1 , 3 , 4 , 7 , 11 } { 2 , 5 , 6 , 10 } Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  13. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 � 7 � Then choose slots for : ways 4 � 3 � Then choose slots for : ways 1 2 3 4 5 6 7 8 9 10 11 12 3 subset of slots used for each type type - type - type - { 1 , 3 , 4 , 7 , 11 } { 2 , 5 , 6 , 10 } { 8 , 9 , 12 } Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  14. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 � 7 � Then choose slots for : ways 4 � 3 � Then choose slots for : ways 1 2 3 4 5 6 7 8 9 10 11 12 3 Product rule: subset of slots used for each type  12  12  7  3          =  ×  × type - type - type -  5 , 4 , 3 5 4 3 { 1 , 3 , 4 , 7 , 11 } { 2 , 5 , 6 , 10 } { 8 , 9 , 12 } Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  15. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 � 7 � Then choose slots for : ways 4 � 3 � Then choose slots for : ways 1 2 3 4 5 6 7 8 9 10 11 12 3 Product rule: subset of slots used for each type  12  12  7  3          =  ×  × type - type - type -  5 , 4 , 3 5 4 3 { 1 , 3 , 4 , 7 , 11 } { 2 , 5 , 6 , 10 } { 8 , 9 , 12 } 12! 7! 3! = 5! · 7! × 4! · 3! × 3! · 0! Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  16. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1 ( k 1 , k 2 , · · · , k r ) -sequence � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 � 7 � Then choose slots for : ways 4 � 3 � Then choose slots for : ways 1 2 3 4 5 6 7 8 9 10 11 12 3 Product rule: subset of slots used for each type  12  12  7  3          =  ×  × type - type - type -  5 , 4 , 3 5 4 3 { 1 , 3 , 4 , 7 , 11 } { 2 , 5 , 6 , 10 } { 8 , 9 , 12 } 12! 7! 3! = 5! · 7! × 4! · 3! × 3! · 0! 12! = 5! · 4! · 3! Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  17. Selecting k from n Distinguishible Objects no repetition with repetition n ! n k k -sequence ( n − k )!  n n !  k + n − 1      = k -subset    k k !( n − k )! n − 1  k 1 + · · · + k r k !    = ( k 1 , k 2 , · · · , k r ) -sequence   k 1 , k 2 , . . . , k r k 1 ! · k 2 ! · · · k r ! � 12 � (5 , 4 , 3) -sequence of 5 , 4 , 3 Choose slots for : ways 5 � 7 � Then choose slots for : ways 4 � 3 � Then choose slots for : ways 1 2 3 4 5 6 7 8 9 10 11 12 3 Product rule: subset of slots used for each type  12  12  7  3          =  ×  × type - type - type -  5 , 4 , 3 5 4 3 { 1 , 3 , 4 , 7 , 11 } { 2 , 5 , 6 , 10 } { 8 , 9 , 12 } 12! 7! 3! = 5! · 7! × 4! · 3! × 3! · 0! 12! = 5! · 4! · 3! Creator: Malik Magdon-Ismail Advanced Counting: 4 / 11 Anagrams for aardvark →

  18. Anagrams: All “Words” Using the Letters of aardvark A sequence of 8 letters: 3 a ’s, 2 r ’s, 1 d , 1 v , 1 k . Creator: Malik Magdon-Ismail Advanced Counting: 5 / 11 Overlapping Sets →

  19. Anagrams: All “Words” Using the Letters of aardvark A sequence of 8 letters: 3 a ’s, 2 r ’s, 1 d , 1 v , 1 k . Number of such sequences is 8 8!    = 3! · 2! · 1! · 1! · 1! = 3360 .    3 , 2 , 1 , 1 , 1 Creator: Malik Magdon-Ismail Advanced Counting: 5 / 11 Overlapping Sets →

  20. Anagrams: All “Words” Using the Letters of aardvark A sequence of 8 letters: 3 a ’s, 2 r ’s, 1 d , 1 v , 1 k . Number of such sequences is 8 8!    = 3! · 2! · 1! · 1! · 1! = 3360 .    3 , 2 , 1 , 1 , 1 Exercise. What is the coefficient of x 2 y 3 z 4 in the expansion of ( x + y + z ) 9 ? [Hint: Sequences of length 9 (why?) with 2 x ’s, 3 y ’s and 4 z ’s.] Creator: Malik Magdon-Ismail Advanced Counting: 5 / 11 Overlapping Sets →

  21. Extending the Sum Rule to Overlapping Sets | A ∪ B | = | A | + | B | − | A ∩ B | . A ∩ B A ∩ B A ∩ B (Breaks A ∪ B into smaller sets.) Creator: Malik Magdon-Ismail Advanced Counting: 6 / 11 Inclusion-Exclusion →

  22. Extending the Sum Rule to Overlapping Sets | A ∪ B | = | A | + | B | − | A ∩ B | . A ∩ B A ∩ B A ∩ B (Breaks A ∪ B into smaller sets.) Example. How many numbers in 1 , . . . , 10 are divisible by 2 or 5. Creator: Malik Magdon-Ismail Advanced Counting: 6 / 11 Inclusion-Exclusion →

Recommend


More recommend