floating phase vs chiral transition in classical and
play

Floating phase vs chiral transition in classical and quantum models - PowerPoint PPT Presentation

Floating phase vs chiral transition in classical and quantum models F. Mila Ecole Polytechnique Fdrale de Lausanne Switzerland Natalia Chepiga Lausanne Irvine Scope n C-IC transition in 2D classical 3-state Potts model Potts, chiral


  1. Floating phase vs chiral transition in classical and quantum models F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Natalia Chepiga Lausanne à Irvine

  2. Scope n C-IC transition in 2D classical 3-state Potts model à Potts, chiral (Huse-Fisher), or intermediate critical phase n Hard-boson model of trapped alkali atoms in 1D à Similar physics à Efficient DMRG algorithm à Evidence for all 3 possibilities n Implications for quantum spin chains n Conclusions

  3. Domain walls in commensurate phase A B C ≠ A C B Chiral perturbation Huse-Fisher, 1982

  4. Asymmetric 3-state Potts in 2D n i =0,1 or 2 n Huse-Fisher: possibility of a chiral transition between a Potts point and a Lifshitz point n Intermediate (floating) critical phase beyond Lifshitz point

  5. Huse-Fisher phase diagram Kosterlitz-Thouless L Pokrovsky-Talapov Huse and Fisher, 1982

  6. Difference between the 3 cases n Δ q: distance to 2 π /3; ξ : correlation length n Δ q x ξ à 0 for Potts à cst > 0 for chiral à + ∞ for KT transition n Monte Carlo simulations in the eighties à systems too small to extract Δ q with sufficient precision Selke and Yeomans, 1982

  7. MC simulations of asymmetric Potts model Selke and Yeomans, 1982

  8. Field theory argument Intermediate phase away from Potts Haldane, Bak, Bohr, 1983; Schulz, 1983 Not necessarily true if dislocations are allowed Huse-Fisher, 1984

  9. Hard boson model n Period-3 ordering of a chain of trapped alkali-metal atoms Bernien et al, Nature 2017 n Hard boson model n Two constraints Fendley, Sengupta, Sachdev 2004

  10. Hard-bosons: phase diagram Fendley et al, 2004; Chepiga and FM, arXiv:1808.08990

  11. Phase transitions n Transition out of period-2 phase: à Ising à Tricritical Ising point à First order n Disorder line: entirely inside the disordered phase n Transition out of period-3 phase: Commensurate-Incommensurate transition

  12. Hard bosons – previous results n Fendley-Sengupta-Sachdev (2004) à Intermediate phase for U à - ∞ à Probable intermediate phase up to Potts n Samajdar, Choi, Pichler, Lukin, Sachdev (2018) à Evidence of non-integer dynamical exponent between Potts and V à + ∞ à Chiral transition between Potts and V à + ∞

  13. Hilbert space n Constraints è dim = Fibonacci number F n+1 Golden ratio Fendley et al 2004 n Same Hilbert space dimension as Quantum Dimer Model on a ladder Sierra and Martin Delgado 1997 Are these models related?

  14. Quantum Dimer Model Staggered states + RK v/J 1 0

  15. Exclude staggered states Period 3 Rung singlet RK v/J 1 2.67 0 3-state Potts transition? Not clear à Gap closing, but complicated spectrum à Incommensurate short-range correlations right of RK point in rung singlet phase

  16. General quantum dimer ladder Counts vertical flippable plaquettes Counts horizontal Flips plaquettes flippable plaquettes

  17. QDM ó Hard bosons n Exclude the two staggered configurations Then N. Chepiga and FM, arXiv:1809:00746

  18. DMRG algorithm n Implement constraint when building MPS à huge reduction of Hilbert space n For QDM, all tensors are block diagonal in label 0 or 1 à better than hard-boson model n Simulations up to 9’000 sites, routinely 4’800 à Bond dimension up to 2’200 to keep all states with Schmidt value larger than 10 -12

  19. Extracting Δ q and ξ Fit dimer-dimer correlations with Orstein- Zernicke n Δ q: extremely precise results (at least 3 digits) n ξ : up to thousand or so à meaningful evaluation of Δ q ξ

  20. Two-step fit ξ q

  21. Hard-bosons: phase diagram Fendley et al, 2004; Chepiga and FM, arXiv:1808.08990

  22. Three cases

  23. Three cases n Potts: Δ q goes to zero with exponent 5/3, ξ diverges with exponent 5/6 è Δ q ξ à 0 n Vicinity of Potts: Single transition è Δ q goes to zero with exponent smaller than 1 è Δ q ξ à constant n Far from Potts: Two transitions : KT and PT, and intermediate critical phase in both directions

  24. Nature of phase transition n U<-4.5 or V>6: Intermediate phase n U>-4.5 and V>6: chiral phase

  25. Hard-bosons: phase diagram Fendley et al, 2004; Chepiga and FM, arXiv:1808.08990

  26. Quantum Dimer Model N. Chepiga and FM, arXiv:1809:00746

  27. Effective model for spin-1/2 ladder n Motivation: Ising transition in spin-1/2 ladders inside singlet sector (singlet-triplet gap does not close) Nersesyan and Tsvelik 1997 n Coupled J 1 -J 2 chains Lavarelo, Roux, Laflorencie 2011

  28. Quantum loop model I n Motivation: Ising transition in a frustrated spin-1 chain inside singlet sector N. Chepiga, I. Affleck, FM, PRB 2016

  29. Quantum loop model II n Defined on a zigzag chain n Spin-1 à Two valence bonds from each site à Loop model Some typical configurations

  30. Quantum loop model III Counts double bonds Counts single bonds Plaquette flipping

  31. QLM ó Hard bosons n Exclude states with double bond on leg n Exclude nearest-neighbor VBS and states connected to it (separate sector) Then N. Chepiga and FM, arXiv:1809:00746

  32. Back to Quantum Loop Model N. Chepiga and FM, arXiv:1809:00746

  33. Conclusions on 1D models n Constrained models: 4 equivalent models à Quantum Dimer Model à Quantum Loop Model à Hard boson model à Fibonacci anyon chain: tricritical Ising or Potts point depending on the sign of the density terms matrix elements

  34. General conclusions n Phase diagram: very rich! à Ising à Tricritical Ising à 3-state Potts à Huse-Fisher chiral phase transition à Intermediate floating phase with KT and PT transitions

  35. Perspectives n Locate the Lifshitz points, and investigate their properties n Check other consequences of chiral phase transition, e.g. dynamical exponent n Revisit the classical asymmetric Potts model. With tensor networks?

Recommend


More recommend