flips in edge labelled triangulations
play

Flips in Edge-Labelled Triangulations Prosenjit Bose 1 Anna Lubiw 2 - PowerPoint PPT Presentation

Flips in Edge-Labelled Triangulations Prosenjit Bose 1 Anna Lubiw 2 Vinayak Pathak 2 Sander Verdonschot 1 1 Carleton University 2 University of Waterloo 28 May 2015 Sander Verdonschot Flips in Edge-Labelled Triangulations Triangulations


  1. Flips in Edge-Labelled Triangulations Prosenjit Bose 1 Anna Lubiw 2 Vinayak Pathak 2 Sander Verdonschot 1 1 Carleton University 2 University of Waterloo 28 May 2015 Sander Verdonschot Flips in Edge-Labelled Triangulations

  2. Triangulations • Graphs where all faces are triangles Sander Verdonschot Flips in Edge-Labelled Triangulations

  3. • Diagonals have unique labels Flips • Replace edge by other diagonal of quadrilateral Sander Verdonschot Flips in Edge-Labelled Triangulations

  4. Flips • Replace edge by other diagonal of quadrilateral • Diagonals have unique labels 1 1 3 3 5 5 6 6 2 2 4 4 Sander Verdonschot Flips in Edge-Labelled Triangulations

  5. Flip graphs • Vertex = triangulation, Edge = flip Sander Verdonschot Flips in Edge-Labelled Triangulations

  6. Flip graphs • Vertex = triangulation, Edge = flip Sander Verdonschot Flips in Edge-Labelled Triangulations

  7. • O n — Sleator et al., 1992 • 8 n O 1 — Komuro, 1997 • 6 n O 1 — Mori et al., 2001 • 5 2 n O 1 — Bose et al., 2014 • 5 n O 1 — Cardinal et al., 2015 History • Introduced by Wagner in 1936 • Flip graph of combinatorial triangulations is connected • Diameter: • O ( n 2 ) — Wagner, 1936 Sander Verdonschot Flips in Edge-Labelled Triangulations

  8. History • Introduced by Wagner in 1936 • Flip graph of combinatorial triangulations is connected • Diameter: • O ( n 2 ) — Wagner, 1936 • O ( n ) — Sleator et al., 1992 • 8 n − O ( 1 ) — Komuro, 1997 • 6 n − O ( 1 ) — Mori et al., 2001 • 5 . 2 n − O ( 1 ) — Bose et al., 2014 • 5 n − O ( 1 ) — Cardinal et al., 2015 Sander Verdonschot Flips in Edge-Labelled Triangulations

  9. History • Triangulation of convex polygon = binary tree • Diameter = 2 n − 10 — Sleator et al., 1988 Sander Verdonschot Flips in Edge-Labelled Triangulations

  10. • What happens when edges are labelled? History • What happens when the vertices are labelled? • Diameter is Θ ( n log n ) - Sleator et al., 1992 7 4 5 3 6 2 1 Sander Verdonschot Flips in Edge-Labelled Triangulations

  11. History • What happens when the vertices are labelled? • Diameter is Θ ( n log n ) - Sleator et al., 1992 • What happens when edges are labelled? 7 4 5 3 6 2 1 Sander Verdonschot Flips in Edge-Labelled Triangulations

  12. • Via canonical form T C • We only need to show T T C Upper bound • Transform T 1 into T 2 Sander Verdonschot Flips in Edge-Labelled Triangulations

  13. • We only need to show T T C Upper bound • Transform T 1 into T 2 • Via canonical form T C Sander Verdonschot Flips in Edge-Labelled Triangulations

  14. Upper bound • Transform T 1 into T 2 • Via canonical form T C • We only need to show T �→ T C Sander Verdonschot Flips in Edge-Labelled Triangulations

  15. Transform into canonical • Ignore labels • Sort Sander Verdonschot Flips in Edge-Labelled Triangulations

  16. • We can do insertion sort • Flip graph is connected! • Diameter is O n 2 • Can we do better? Sorting • We can exchange adjacent diagonals Sander Verdonschot Flips in Edge-Labelled Triangulations

  17. • Flip graph is connected! • Diameter is O n 2 • Can we do better? Sorting • We can exchange adjacent diagonals • We can do insertion sort Sander Verdonschot Flips in Edge-Labelled Triangulations

  18. • Can we do better? Sorting • We can exchange adjacent diagonals • We can do insertion sort • Flip graph is connected! • Diameter is O ( n 2 ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  19. Sorting • We can exchange adjacent diagonals • We can do insertion sort • Flip graph is connected! • Diameter is O ( n 2 ) • Can we do better? Sander Verdonschot Flips in Edge-Labelled Triangulations

  20. • Flip all neutral edges • Reverse • Recurse Quicksort • Partition on the median Sander Verdonschot Flips in Edge-Labelled Triangulations

  21. Quicksort • Partition on the median • Flip all neutral edges • Reverse • Recurse Sander Verdonschot Flips in Edge-Labelled Triangulations

  22. — O 1 — T n 2 — O 1 • Reversing more: O n flips total • Flip middle pair “up” • Recurse on the rest • Reverse middle pair Reverse • Reversing two edges is easy: Sander Verdonschot Flips in Edge-Labelled Triangulations

  23. O n flips total — O 1 — T n 2 — O 1 Reverse • Reversing two edges is easy: • Reversing more: • Flip middle pair “up” • Recurse on the rest • Reverse middle pair Sander Verdonschot Flips in Edge-Labelled Triangulations

  24. Reverse • Reversing two edges is easy: • Reversing more: = O ( n ) flips total • Flip middle pair “up” — O ( 1 ) • Recurse on the rest — T ( n − 2 ) • Reverse middle pair — O ( 1 ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  25. Quicksort • Partition on the median • Flip all neutral edges — O ( n ) = O ( n log n ) flips total • Reverse — O ( n ) • Recurse — 2 T ( n / 2 ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  26. Transform into canonical • Ignore labels — O ( n ) • Sort — O ( n log n ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  27. — O n log n Upper bound • Transform T 1 into T 2 • Via canonical form T C • We only need to show T �→ T C — O ( n log n ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  28. Upper bound • Transform T 1 into T 2 — O ( n log n ) • Via canonical form T C • We only need to show T �→ T C — O ( n log n ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  29. • There are over n edge-labelled triangulations: 2 O n d n O n d log n d n log n Theorem The diameter of the flip graph is n log n . Lower bound Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most 2 O ( n + m ) , regardless of labellings. Sander Verdonschot Flips in Edge-Labelled Triangulations

  30. Theorem The diameter of the flip graph is n log n . Lower bound Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most 2 O ( n + m ) , regardless of labellings. • There are over n ! edge-labelled triangulations: 2 O ( n + d ) � n ! O ( n + d ) � log n ! d � Ω ( n log n ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  31. Lower bound Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most 2 O ( n + m ) , regardless of labellings. • There are over n ! edge-labelled triangulations: 2 O ( n + d ) � n ! O ( n + d ) � log n ! d � Ω ( n log n ) Theorem The diameter of the flip graph is Θ ( n log n ) . Sander Verdonschot Flips in Edge-Labelled Triangulations

  32. Combinatorial triangulations • Not all flips are valid Sander Verdonschot Flips in Edge-Labelled Triangulations

  33. Combinatorial triangulations • Transform to a canonical form — O ( n ) • Sort the labels — ? Sander Verdonschot Flips in Edge-Labelled Triangulations

  34. • Flip graph is connected! Combinatorial triangulations • Exchange spine edge with incident non-spine edge Sander Verdonschot Flips in Edge-Labelled Triangulations

  35. Combinatorial triangulations • Exchange spine edge with incident non-spine edge • Flip graph is connected! Sander Verdonschot Flips in Edge-Labelled Triangulations

  36. — O 1 — O n log n — O n • Flip external edge • Use convex polygon result • Swap boundary edges in Combinatorial triangulations • Faster: reorder all labels around inner vertex at the same time Sander Verdonschot Flips in Edge-Labelled Triangulations

  37. — O n log n — O n — O 1 • Use convex polygon result • Swap boundary edges in Combinatorial triangulations • Faster: reorder all labels around inner vertex at the same time • Flip external edge Sander Verdonschot Flips in Edge-Labelled Triangulations

  38. — O n — O 1 — O n log n • Swap boundary edges in Combinatorial triangulations • Faster: reorder all labels around inner vertex at the same time • Flip external edge • Use convex polygon result Sander Verdonschot Flips in Edge-Labelled Triangulations

  39. — O n — O 1 — O n log n • Swap boundary edges in Combinatorial triangulations • Faster: reorder all labels around inner vertex at the same time • Flip external edge • Use convex polygon result Sander Verdonschot Flips in Edge-Labelled Triangulations

  40. — O 1 — O n log n — O n Combinatorial triangulations • Faster: reorder all labels around inner vertex at the same time • Flip external edge • Use convex polygon result • Swap boundary edges in Sander Verdonschot Flips in Edge-Labelled Triangulations

  41. Combinatorial triangulations • Faster: reorder all labels around inner vertex at the same time • Flip external edge — O ( 1 ) • Use convex polygon result — O ( n log n ) • Swap boundary edges in — O ( n ) Sander Verdonschot Flips in Edge-Labelled Triangulations

  42. Combinatorial triangulations • Transform to a canonical form — O ( n ) • Sort the labels — O ( n log n ) Sander Verdonschot Flips in Edge-Labelled Triangulations

Recommend


More recommend