flexure design sequence
play

Flexure Design Sequence Determine Effective flange width - PDF document

Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence Determine Effective flange width Determine maximum tensile beam stresses (without prestress) Estimate eccentricity


  1. Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence • Determine Effective flange width • Determine maximum tensile beam stresses (without prestress) • Estimate eccentricity and number of strands at midspan • Calculate prestress loss • Determine number of strands and develop strand arrangement Flexure Design Sequence • Determine eccentricities • Check service stresses • Check fatigue • Calculate nominal flexural resistance • Check reinforcement limits • Determine pretensioned anchorage zone reinforcement July 2005 3-1

  2. Example Example 1 120'-0" Example 1 Centerline bridge 1'-0" 18'-0" 18'-0" 1'-0" 9" AASHTO Type VI Beam 4'-9" 9'-6" 4'-9" 4'-9" 9'-6" 4'-9" TYPICAL SECTION July 2005 3-2

  3. Example 1 • Simple spans: 120 feet • Fully prestressed beams • Bonded tendons • Skew angle: 0 degrees • Stress limit for tension in beam concrete (corrosion conditions): severe Example 1 Deck concrete ' = f 5 ksi c ( )( ) 15 . = 15 . ' = = E 33000 w f 33000 0145 . 5 4074 ksi c c Beam concrete ' = f c 8 ksi = E 5154 ksi c = f ' 7 ksi ci E = 4821 ksi ci Example 1 • Prestressing steel – Strand type: 270 ksi low relaxation – Strand diameter: 0.6 inch – Cross-sectional area per strand: 0.217 in 2 July 2005 3-3

  4. Example 1 Prestressing steel f py = = 090 . f 243 ksi pu E = 28 500 , ksi ps Non-prestressed reinforcement f y = 60 ksi = E 29 000 , ksi s Example 1 - Interior Beam Effective flange width may be taken as the least of: a) One-quarter of the effective span length: 120 ft (0.25) (120) (12) = 360 in Example 1 - Interior Beam b) 12.0 times the average thickness of the slab, 9 in, plus the greater of: Web thickness: 8 in One-half of the top flange of the girder: (0.5) (42) = 21 in (12) (9) + 21 = 129 in July 2005 3-4

  5. Example 1 - Interior Beam c) The average spacing of adjacent beams: 9.5 ft (9.5) (12) = 114 in Effective flange width = 114 in Example 1 - Exterior Beam Effective flange width may be taken as one-half the effective width of the adjacent interior beam, 114 in, plus the least of: a) One-eight of the effective span length: 120 ft (0.125) (120) (12) = 180 in Example 1 - Exterior Beam b) 6.0 times the average thickness of the slab, 9 in, plus the greater of: One-half the web thickness: (0.5) (8) = 4 in One-quarter of the top flange of the girder: (0.25) (42) = 10.5 in The greater of these two values: 10.5 in (6) (9) + 10.5 = 64.5 in July 2005 3-5

  6. Example 1 - Exterior Beam c) The width of the overhang: 4.75 ft (4.75) (12) = 57 in Effective flange width = (0.5) (114) + 57 = 114 in Example 1 - Exterior Beam (114)(0.7906) = 90.12" C. G. Slab 9" 22.96" C. G. Composite Section 17.16" 76.50" 72" C. G. Beam 53.54" 36.38" Example 1 Non-composite Section Composite Section AASHTO Interior Exterior Property Property Type VI Beams Beam Beam A (in 2 ) 1085 I comp (in 4 ) 1485884 1485884 I (in 4 ) 733320 y bc (in) 53.54 53.54 y b (in) 36.38 y tc (in) 18.46 18.46 y t (in) 35.62 y slab top (in) 27.46 27.46 S b (in 3 ) 20157 S bc (in 3 ) 27751 27751 S t (in 3 ) 20587 S tc (in 3 ) 80503 80503 w (k/ft) 1.130 S slab top (in 3 ) 68443 68443 July 2005 3-6

  7. Analysis • Loads • Distribution of live load • Load factors Non-composite Dead Loads • Beam (DC) • Deck slab (DC) • Diaphragms (DC) Composite Dead Loads • Curb (DC) • Bridge rail (DC) • Overlays (DW) • Future wearing surface (DW) • Utilities (DW) July 2005 3-7

  8. Design Vehicular Live Load • Article 3.6.1.2 • HL-93 – Combination of • Design truck or design tandem • Design lane load Unfactored Moments (k-ft) Interior Beam Exterior Beam Beam 2034 2034 Slab 2137 2053 Rail 250 250 Wearing Surface 405 405 Live Load (Including Dynamic Allowance): 3680 k-ft (Truck + Lane) 3080 k-ft (Tandem + Lane) Distribution of Live Load Bending Moment Shear One Multi- One Multi- Lane Lane Lane Lane Lever Rule -- -- -- -- Equations (“m” Interior X X X X included) Girder Special -- -- -- -- Analysis Lever Rule X -- X -- Equations Exterior -- X -- X Girder Special X X X X Analysis July 2005 3-8

  9. Example 1 MOMENT SHEAR INTERIOR BEAM one lane loaded 0.506 0.740 two lanes loaded 0.741 0.918 one lane loaded - fatigue 0.422 0.617 Example 1 MOMENT SHEAR EXTERIOR BEAM one lane loaded 1.042 1.042 two lanes loaded 0.848 0.864 one lane loaded - fatigue 0.868 0.868 Additional Investigation one lane loaded 0.793 0.793 two lanes loaded 0.942 0.942 one lane loaded - fatigue 0.661 0.661 Load Combinations and Load Factors Limit State Load Strength I Strength II Service I Service III Fatigue Max-1.25 Max-1.25 DC 1.00 1.00 ---- Min-0.90 Min-0.90 Max-1.50 Max-1.50 DW 1.00 1.00 ---- Min-0.65 Min-0.65 LL 1.75 1.35 1.00 0.80 0.75 IM 1.75 1.35 1.00 0.80 0.75 July 2005 3-9

  10. Beam Stresses • Due to dead load and live load Service III limit state (Crack Control) + + + 08 . M M M M M = − − beam slab rail ws LL f bottom S S b bc Service I limit state + + + M M M M M = beam slab + rail ws LL f top S S t tc Beam Stresses Example 1 Example 1 - Interior Beam Stresses at midspan due to dead load and live load. Extreme bottom of beam fiber (Service III Limit State): [ ] ( ( )( ) ( )( ) ) + + 2034 + 2137 12 250 405 08 2728 . 12 f bottom = − − = − 3710 . ksi (t) 20157 27751 Extreme top of beam fiber (Service I Limit State): ( )( ) [ ] ( ) + + + 2034 2137 12 250 405 2728 12 f top = + = 2 936 . ksi (c) 20587 80503 July 2005 3-10

  11. Example 1 - Exterior Beam Stresses at midspan due to dead load and live load. Extreme bottom of beam fiber (Service III Limit State): [ ] ( ( )( ) ) ( )( ) + 250 + 405 + 08 3837 . 12 2034 2053 12 f bottom = − − = − 4 044 . ksi (t) 20157 27751 Extreme top of beam fiber (Service I Limit State): ( )( ) [ ] ( ) 2034 + 2053 12 250 + 405 + 3837 12 f top = + = 3052 . ksi (c) 20587 80503 Preliminary Strand Arrangement • Calculate maximum tensile stress – Service III limit state • Determine stress limit for tension • Set maximum tensile stress equal to stress limit for concrete tension • Estimate eccentricity at midspan • Solve for total prestress force required Preliminary Strand Arrangement • Estimate total prestress loss • Estimate effective prestress force per strand • Estimate number of prestressing strands July 2005 3-11

  12. Preliminary Strand Arrangement P Pe = − + f f ten bottom A S b ⎛ ⎞ P Pe 1 e − = − = ⎜ − ⎟ f f P A ten bottom ⎝ ⎠ A S S b b − f f ten bottom = P ⎛ ⎞ 1 e ⎜ − ⎟ ⎝ ⎠ A S b Preliminary Strand Arrangement f pe = f pj – estimated losses P e = (f pe )(A ps ) P . Strands = No P e Example • Preliminary strand arrangement July 2005 3-12

  13. Preliminary Strand Arrangement Example 1 Example 1 BEAM STRESSES Bottom fiber, maximum tension stress, all loads applied, Service III Limit State: Interior beam, f bottom = -3.710 ksi Exterior beam, f bottom = -4.044 ksi CONCRETE STRESS LIMIT Limit for tension, all loads applied, after all losses: = = = f 0 0948 . f ' 0 0948 8 . 0 268 . ksi ten c Example 1 ESTIMATE NUMBER OF STRANDS � f pT = total loss in the prestressing steel stress = 60 ksi (estimated) f pj = stress in the prestressing steel at jacking = (0.75)(270) = 202.5 ksi f pe = effective stress in the prestressing steel after losses = 202.5 - 60 = 142.5 ksi A ps = area of prestressing steel (per strand) = 0.217 in 2 July 2005 3-13

  14. Example 1 ESTIMATE NUMBER OF STRANDS P e = effective prestressing force in one strand = (f pe )(A ps ) = (142.5)(0.217) = 30.9 k A= area of non-composite beam = 1085 in 2 S b = section modulus, non-composite section, extreme bottom beam fiber = 20157 in 3 e = eccentricity of prestress force at midspan = -32 in (estimated) Example 1 - Exterior Beam (114)(0.7906) = 90.12" C. G. Slab 9" 22.96" C. G. Composite Section 17.16" 76.50" 72" C. G. Beam 53.54" 36.38" Example 1 - Interior Beam Estimated total prestress force required: ( ) ( ) − = − 0 268 . − − 2 710 . f f P = = 13718 . k ten bottom ( ) ⎛ ⎞ ⎡ − − ⎤ 1 e 1 32 − ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ 1085 20157 A S ⎣ ⎦ b Estimated number of strands required: P 13718 . Strands = = = No . 44 4 . P 30 9 . e July 2005 3-14

Recommend


More recommend